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We study a finite basic structure that possibly underlies the observed elementary quantum fields
with gauge and gravitational interactions. Realistic wave functions of locally interacting quantum
fields emerge naturally as low-resolution descriptions of the generic distribution of many quantifiable
properties of arbitrary static objects. We prove that in any quantum theory with the superposi-
tion principle, evolution of a current state unavoidably continues along alternate routes with every
Hamiltonian that possesses pointer states. Then for a typical system the Hamiltonian changes un-
predictably during evolution. This applies to the emergent quantum fields too. Yet the Hamiltonian
is unambiguous for isolated emergent systems with sufficient symmetry, e.g., local supersymmetry.
The other emergent systems, without specific physical laws, cannot be inhabitable. The acceptable
systems are eternally inflating universes with reheated regions. We see how eternal inflation perpet-
ually creates new short-scale physical degrees of freedom and why they are initially in the ground
state. In the emergent quantum worlds probabilities follow from the first principles. The Born rule
is not universal but there are reasons to expect it in a typical world. The emergent quantum evolu-
tion is necessarily Everettian (many-world). However, for a finite underlying structure the Everett
branches with the norm below a positive threshold cease to exist. Hence some experiments that
could be motivated by taking the Everett view too literally will be fatal for the participants.
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I. INTRODUCTION

Quantum mechanics enjoys the status of one of today’s
most impeccable and yet the most counterintuitive phys-
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ical theory. It has flawlessly passed about a century of
accurate experimental tests. So deeply has it permeated
the contemporary physical picture that in the search for
the ultimate “theory of everything” many physicists re-
gard quantum mechanics as a basic postulate. Popular
approaches with this assumption include string theory
and loop quantum gravity.

At the same time, ever since its inception, quantum
mechanics has seemed to defy logic. Even now, not every
issue of its internal consistency is resolved to the satis-
faction of the entire physics community.

Major progress in “making sense” of quantum me-
chanics occurred as early as 1950s with the remark-
able thesis by Hugh Everett [1]. Everett demonstrated
that quantum mechanics does not necessarily require
the awkward postulate of probabilistic (moreover, by
Bell’s theorem [2], nonlocal and superluminal) collapse
of a wave function during measurement. Altogether, Ev-
erett pointed out a straightforward albeit still bewilder-
ing to many people fact that with the universal applica-
bility of unitary quantum dynamics to both microscopic
and macroscopic systems the physical world unavoidably
splits into numerous co-existing branches of “alternate
realities.”

Despite this progress and subsequent developments,
notably understanding of quantum decoherence [3–7],
open questions persist about quantum mechanics as well
as about other fundamental principles of nature. The
questions that have been raised include the following:

1. Are Everett’s alternate worlds real, or does the
wave function nevertheless collapse to a single
macroscopic configuration because of yet unknown
nonlocal [2] physics [8–12]?

2. If all the Everett branches exist, why do we find
ourselves in a given branch with probability that is
proportional to the squared norm of the branch’s
wave function [13–18]?

3. Can we understand the remaining quantum-
mechanical postulates and the physical Hamil-
tonian in deeper, more elementary and natural
terms [19]?

4. Why do we observe the specific laws of physics [20,
21]?

5. Why do these laws, in particular, the parame-
ters of the Standard Model, as far as observations
show [22], remain constant in time and space?

6. Why does time in quantum mechanics conceptually
differ from space, yet time and space unify in the
relativistic description of nature?

7. How are the new microscopic degrees of freedom
created when the universe expands eternally in cos-
mological inflation [23, 24]? Can inflation ulti-
mately “run out” of the new small-scale degrees
of freedom?

8. Why do the infinitely numerous short-scale degrees
of freedom appear during inflation almost in the
ground state, necessary for inflation to proceed [25–
28]?

9. How to reconcile the unitarity of quantum evolu-
tion with the apparent loss of information during
evaporation of black holes by the nearly thermal
Hawking radiation [29, 30]? How to explain the
“firewall” paradox [31]?

We answer these and several other fundamental ques-
tions by observing intriguing logical consequences of well-
tested physical laws in the established range of their va-
lidity. This paper shows that elementary structures, nat-
ural or mathematical, that are typically encountered in
our experience, generically contain emerging phenomeno-
logically viable quantum-field worlds. These worlds expe-
rience inflation and subsequent evolution that resembles
and possibly includes ours. In this Introductory section
we visualize the eventual simple results with a suggestive
sketch. The reader should nevertheless remember that
the following is only a helpful but not precise illustra-
tion of results that we obtain systematically in the main
sections.

Let us consider harmonic modes of a weakly coupled
field during cosmological inflation. The modes whose fre-
quency substantially exceeds the rate of the Hubble ex-
pansion (the Hubble constant) should be almost in the
ground state for the inflation to be possible [cf. eq. (199)].
The wave function of the ground state for the modes
of the field with negligible interaction is close to the
Gaussian form. Specifically, the wave function of M
modes {m} is

ψ(q) ≈
∏
m

(
π−

1
4 e−

1
2 q

2
m

)
= π−

M
4 e−

1
2

∑
m q2m (1)

where qm are the appropriately normalized amplitudes of
the field modes. In Sec. VII we will see that the quantum
fields that emerge in the described generic structure have
gauge and gravitational interactions. Their ground state
may not at all be close to the Gaussian form (1). Yet let
us continue this illustration under the assumption of the
initial wave function (1).

Is there a simple, familiar structure that produces an
objectively existing function of the form (1)? In fact, al-
most any collection of many objects does, regardless of
what the word “object” stands for. It is sufficient that
the objects or their groups possess quantifiable proper-
ties q which, when measured in appropriate coordinates,
are distributed by eq. (1). This is expected generically
by the central limit theorem of probability theory. Of
course, properties qp of many physical or mathematical
objects familiar to us obey a non-Gaussian distribution
that is specific to the objects’ nature. However, gen-
eral linear combinations of many independent properties,
qn =

∑
p c

n
p q

p, are indeed distributed by the universal

normal (Gaussian) law, at least, under the conditions of
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the central limit theorem. Such N generically chosen
uncorrelated coordinates qn are therefore distributed by
eq. (1). In this paper we consider the generic collection
of objects and a finite number N of their generic prop-
erties qn that satisfy the central limit theorem. We call
this system a “generic structure”.

For a large but finite collection of the basic objects, the
precise distribution ν(q) of their properties q is a sum of
delta-functions:

ν(q) =
∑
a

δ(N)(q − qa) . (2)

Here qa ≡ {qna} is a vector of the N considered proper-
ties qn that are evaluated at the a’th object. When we
view this distribution at a finite resolution ∆q such that
the range ∆q contains many basic objects, we observe
a smoothed distribution that approaches the universal
Gaussian form. As discussed in Sec. III and illustrated
in Fig. 1, we can generally describe the smoothed dis-
tribution by linear combinations of linearly-independent
smooth basis functions. The linear space spanned by the
coefficients of these linear combinations will be found to
give rise to the Hilbert space of quantum states of fields
with local dynamical symmetries. The complex struc-
ture of the Hilbert space and unique Hermitian prod-
uct, related to objective physical probability in the emer-
gent world, appear automatically. Quantum entangle-
ment over arbitrary distances in this structure is trivial
(Sec. X) because the physical degrees of freedom then
fundamentally are coordinates of the basic distribution.
An entangled quantum state of two dynamical variables
matches to a distribution term that is localized in the
both corresponding coordinates. Locality of the field dy-
namics in the emergent spacetime also follows as shown
in this paper.

The available continuous transformations of the ba-
sis functions, superposed to smoothly fit the basic dis-
tribution, may seem to vastly outnumber the transfor-
mations that constitute the quantum evolution with a
specific Hamiltonian. Yet the identical concern can also
be raised for the standard axiomatic quantum mechan-
ics. As Sec. II shows, the quantum superposition princi-
ple entails that unitary transformation of the wave func-
tion by any Hamiltonian that possesses evolving pointer
states [4, 7] creates physically existing branches of evolu-
tion. In particular, if the superposition principle holds at
least on the experimentally tested scales then any quan-
tum states (or, in the Heisenberg picture, the operators
for the observables) should apparently undergo physically
real evolution by numerous Hermitian operators in the
role of the system Hamiltonian. Then the Hamiltonian
for a typical observer would unpredictably change during
evolution. It thus becomes especially puzzling why the
experiments and our daily experience indicate the evolu-
tion by a rather special, due to its symmetries, Hamilto-
nian that is constant throughout time and space.

A key to answering why our perceived world evolves
by spacetime-independent and special physical laws may

be the following. Local dynamical symmetries, including
the gauge and diffeomorphism symmetries, not only are
symmetries of the action (governing evolution of the wave
function) but also are symmetries of the wave function
itself. This has long been recognized for quantum grav-
ity [32] but seldom discussed for quantum field theory,
where for calculations it is convenient to fix the gauge
and also to work not with the wave function but with
field correlation functions.

Let us again consider the described earlier smoothed
distribution of quantifiable properties of objects. We re-
gard this distribution as the basic entity that materially
represents the wave function of an emergent physical sys-

tem. The emergent physical local fields φ̂α(x) are cer-
tain linear combinations of uncorrelated coordinates q̂n

of the basic distribution (Sec. IV). We identify gauge
fields A(x) with parameters that distinguish possible di-

rections of the local evolution of φ̂α(x) (Sec. V). A wave
function ψ[φα(x),A(x)] of a gauge-symmetric system is
necessarily constant among gauge-equivalent configura-
tions (Appendix A). Therefore, let us identify the coordi-
nates q = {qn} with the cosets of gauge-equivalent con-
figurations [φα(x),A(x)] (Sec. V). Then the smoothed
distribution of the generic properties materially repre-
sents the wave function ψ of an emergent system with
the gauge symmetry. The coordinates q become the dy-
namical variables of this emergent physical system.

The specified emergent quantum fields can evolve only
by a gauge-invariant action. These fields are not merely
a theoretical invention. Their wave function exists ob-
jectively as a tangible distinctive structure among the
objects that surround us and among many other ab-
stract or material objects. In the same generic collec-
tions of basic objects we could attempt to identify other
emergent “wave functions” without the local symmetry.
Yet they would not represent antropically viable physical
worlds with definite laws of internal physical evolution.1

Without concrete dynamical laws that do not change in
time unpredictably, the internal systems in the respective
worlds cannot evolve biologically and develop naturally
into intelligent observers. Fortunately, those unaccept-
able emergent “quantum systems” have a configuration
space of different dimensionality. Therefore, they do not
blend with an emergent system that possesses a suffi-
ciently2 restrictive local symmetry and definite physical

1 More generally, several authors noted [20, 21] that any mathe-
matical structure possibly corresponds to some emergent physi-
cal system. In relation to this general statement, the present pa-
per explores which mathematical structures and their “material”
representations actually can be behind our physical world, and
which of the acceptable structures are the most likely (generic)
ones. We will also see that the mathematical structure of the
physical laws is insufficient to predict every phenomenological
outcome, which sometimes depends on the material representa-
tion of this mathematics.

2 We will see that gauge and diffeomorphism symmetries are in-
sufficient for fixing the physical laws. Yet this task is achieved
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laws. The emergent symmetric quantum field system is
thus a distinctive, objectively existing entity.

Gravitational interaction arises in the emergent sys-
tems similarly to the gauge interaction. The role of the
gauge symmetry is then fulfilled by the diffeomorphism
symmetry. Gravity, however, involves important techni-
cal subtleties. We treat them in Secs. VI and VII.

In essence, the described description of the generic
Gaussian distribution develops into a complicated wave
function of an inflating universe.3 Despite the simple
Gaussian form of the original distribution, the resulting
quantum world can be rather convoluted. In many as-
pects this corresponds to the well understood transfor-
mation of the simple, nearly Gaussian wave function of
the inflationary field modes into the contemporary cos-
mic structure.

The world that we perceive today is only one of the nu-
merous decoherent branches into which the global wave
function splits during its inflationary and later evolu-
tion. If fundamentally the global wave function is a
smoothed representation of a finite underlying structure
then the wave function has intrinsic uncertainty because
the same discrete basic distribution allows slightly differ-
ent but equally statistically significant smooth fits. (As
an analogy, there is uncertainty in the smooth boundary
of any familiar macroscopic object, which below certain
resolution is composed of almost point-like elementary
particles.) Once a particular Everett’s branch becomes
unresolvable at this intrinsic uncertainty of the overall
wave function, the branch can no longer be regarded as
an objectively existing part of the actual fundamental
structure. Hence the norm of every physical Everett’s
branch should exceed a positive limit, fixed for a given
basic structure (Sec. III). This has very important real-
world consequences, not only for remote future but for
our present (Sec. IX).

In addition, since the norm of every physical Everett’s
branch exceeds a fixed positive threshold, the number of
the alternate branches becomes finite. Then the prob-
ability of various macroscopic outcomes of a quantum
process is unambiguous. We therefore do not need to im-
pose the Born rule as a postulate, which the Born rule
is in any current interpretation of quantum mechanics,
including Everett’s (e.g. [18]). Rather we can explore
under which conditions the Born rule arises naturally for
the emergent quantum systems (Sec. IX).

The rest of the paper is organized as follows. The end
of Introduction specifies our notations. Sec. II consid-
ers any quantum theory (either axiomatic or of a deeper
origin) for which the quantum superposition principle

by local supersymmetry, Sec. VIII.
3 We will find in Sec. VII E that the continuous evolution of the

wave function by the physical Hamiltonian may be preceded by
an initial transformation of the Gaussian function into a non-
Gaussian ground state wave function of the field modes for this
Hamiltonian.

holds at least on the scales probed by our experiments.
The section demonstrates that then any current quan-
tum state typically starts branches in which the current
observables subsequently evolve by many various time-
dependent Hamiltonians. We answer why we see our
world evolving by an unchanged Hamiltonian in later sec-
tions.

Sec. III describes how an evolving wave function with
connection to probability emerges naturally as a contin-
uous set of fitting functions for the distribution of prop-
erties in the generic static collection of almost arbitrary
objects.

Secs. IV-VIII show in detail that some emergent sys-
tems of Sec. III objectively exist. Namely, they are
clearly and objectively identifiable: there are no infinites-
imally modified emergent systems with which the consid-
ered emergent systems could blend. These emergent sys-
tems correspond to specific states of quantum fields with
gauge-invariant and diffeomorphism-invariant evolution
and inflationary initial conditions.

Specifically, Sec. IV describes the natural emergence
of a complex wave function, of probability-related Her-
mitian product, and of linear evolution of the wave func-
tion with a Hamiltonian operator. Sec. V considers gauge
symmetries and introduces emergent gauge fields. Its re-
sults will be crucial for answering why, despite the ar-
guments of Sec. II, we experience evolution by a special
and unchanged Hamiltonian (Sec. VIII). Sec. VI studies
gravitational degrees of freedom. A reader who is not in-
terested in technicalities may prefer to skip Secs. IV-VI.
Then Sec. VII describes emergence of field states repre-
senting a universe that expands from inflationary past.
At last, Sec. VIII discusses mechanisms that restrict the
physical evolution to a specific Hamiltonian whose cou-
plings do not vary in spacetime and with the experiments
that measure them. While these properties are implicit
for the “physical laws” based on our experience, they
should, as highlighted by Sec. II, be extremely surpris-
ing for quantum dynamics regardless of its possible more
fundamental origin.

Sec. IX studies the probabilities for different macro-
scopic outcomes of a quantum process. When the basic
structure that underlies the emergent physical systems is
finite then these probabilities are objective and, in prin-
ciple, unambiguous. The section arrives at important
and, to the author’s knowledge, previously unrecognized
consequences of practical relevance.

Concluding Sec. X briefly summarizes the results. The
paper also has three technical Appendixes. They will
be referred to when their material is needed in the main
sections.

A companion paper [33] describes quantitatively the
full evolution and Hawking evaporation of black holes,
including their central singularity and the final moment
of the evaporation, by applying the generic first-principle
construction of interacting quantum fields and physical
spacetime that is developed in the present paper.
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A. Notations

We employ the units with ~ = c = mP = 1, where the
Planck mass mP is related to the Newton gravitational
constant G as

m2
P ≡

1

8πG
. (3)

We use Greek indices µ, ν, χ, . . . for the components
of spacetime tensors, and Latin indices i, j, k, . . . for the
components of spatial tensors. We label the components
of field multiplets with Greek indices α, β, γ, . . . but we
apply Latin indices a, b, c, . . . to distinguish the adjoint-
representation multiplets of gauge fields. We denote the
components of general vectors or configuration-space co-
ordinates with indices n and m.

We take the signature for the spacetime metric to
be (−,+,+,+) and parameterize the metric by the
Arnowitt-Deser-Misner (ADM) decomposition [34, 35]

ds2 = −(Ndt)2 + γij(dx
i +N idt)(dxj +N jdt). (4)

Then the metric tensor and its inverse are

gµν =

(
−N2 +NiN

i Ni

Ni γij

)
, (5)

gµν =
1

N2

(
− 1 N i

N i N2γij −N iN j

)
. (6)

Indices of spatial tensors are lowered and raised by the
spatial metric γij and its inverse γij . We denote differ-
entiation by a comma, covariant differentiation based on
the spacetime metric gµν by a semicolon, and covariant
differentiation based on the spatial metric γij by a verti-
cal bar “|”.

For the Fourier transformation of a function ψ(q),
q ∈ RN , we introduce a shorthand notation

d̄Np ≡ dNp

(2π)N
. (7)

Then

ψ(q) =

∫
d̄Np eip·q ψ(p) , (8)

ψ(p) =

∫
dNq e−ip·q ψ(q) . (9)

Also, ∫
d̄Np eip·(q−q

′) = δ(N)(q − q′), (10)

where δ(N)(q) is the N -dimensional Dirac delta function.
Likewise we define

δ̄(N)(p) ≡ (2π)Nδ(N)(p), (11)

for which ∫
d̄Np′ f(p′) δ̄(N)(p′ − p) = f(p) (12)

and ∫
dNq ei(p

′−p)·q = δ̄(N)(p′ − p). (13)

Throughout the paper q and p denote “dynamical vari-
ables,” describing the physical degrees of freedom in
the configuration and momentum representations respec-
tively. The dynamical variables q should be distinguished
from spacetime coordinates x or spatial coordinates x

of field operators, e.g., in φ̂(x) ≡ φ̂(t,x). Likewise, the
canonical dynamical momenta p should not be confused
with the spatial wavevector k for the Fourier modes of
field operators, e.g., in

φ̂(x) =

∫
d̄3k eik·x φ̂(k). (14)

We will use function notations for functions of a finite
number of variables as well as for functionals (functions
of functions). The quantum-mechanical wave function
will be denoted by ψ(f) and called “wave function” even
when its argument f ranges over a set of field configu-
rations {f(x)}. Since we may approximate a continu-
ous function f(x) by its discretization {fn} on a series
of progressively refined grids, a functional F [f(x)] can
indeed be regarded as the limit of regular functions of
an increasingly large number of variables. This view of
functionals will underpin our fundamental construction
of Sec. III, erasing physical distinction between functions
and functionals.

Accordingly,
∫
df will denote both a conventional and

functional integral with a measure df . The Dirac delta
function δ(f) is defined for any—discrete, continuous, or
function—argument f by∫

df ′ δ(f − f ′)F (f ′) ≡ F (f) (15)

for any map F (f).

II. FREEDOM OF QUANTUM EVOLUTION

Experiments and observations provide solid evidence
that quantum principles apply to the physical world from
at least the smallest scales probed by the particle collid-
ers to macroscopic and even cosmological distances. The
validity of quantum description on the accessible micro-
scopic scales is verified, for example, by the precision
measurements of renormalization running of the coupling
constants and other parameters of the Standard Model
due to quantum radiative corrections. At larger scales
numerous experiments confirm accurate and detailed pre-
dictions of atomic and condensed matter physics, relying
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on quantum description of electrons and the electromag-
netic field. On macroscopic scales quantum mechanics is
also tested with precision in, e.g., SQUID systems and
quantum optics. Even on the largest observable cosmic
scales quantum entanglement and the superposition prin-
ciple are strongly suggested by the success of the infla-
tionary paradigm, explaining the observed angular power
spectra of cosmological inhomogeneities by inflationary
amplification of the vacuum quantum fluctuations.

In this section we highlight a peculiar but logically
unavoidable consequence of the cornerstone superposi-
tion principle of quantum theory at the accessible ener-
gies. This observation will guide us toward identifying
in Secs. III-VIII realistic dynamical quantum field sys-
tems as emergent phenomena in a generic set of almost
arbitrary static objects.

Let us consider quantum degrees of freedom that are

described by commuting field operators f̂α(x). Here the
discrete label α denotes a field type or/and the com-
ponent of a field multiplet (e.g., a spin or isospin pro-
jection). The continuous label x of the field operators
belongs to a 3-dimensional manifold. It is physically in-
terpreted as the spatial coordinate in some coordinate
frame. In this paper we discuss bosonic (commuting)
fields. Fermionic (anticommuting) fields also naturally
exist within the fundamental construction that is estab-
lished in the sections below. We delegate a detailed de-
scription of the fermions and their evolution, with natural
possibility for local supersymmetry, to a later paper.

Since the field operators f̂α(x) commute, we can ex-
pand any pure quantum state |ψ〉 over their simultaneous
eigenstates:

|ψ〉 =

∫
df ψ(f) |f〉 , (16)

with ψ(f) ≡ ψ[fα(x)], df ≡
∏
α[dfα(x)], and

f̂α(x)|f〉 = fα(x)|f〉. Normalizing the mutually
orthogonal eigenstates |f〉 to the delta function of
eq. (15),

〈f ′|f〉 = δ(f ′ − f) , (17)

we arrive at representing the state |ψ〉 by a wave func-
tion ψ(f). By eqs. (16–17), the scalar product of quan-
tum states in the Hilbert space of wave functions is

〈ψ1|ψ2〉 =

∫
df ψ∗1(f)ψ2(f) . (18)

We may define the operators of canonical momenta

fields π̂α(x) that are conjugate to the fields f̂α(x) by

π̂α(x)ψ(f) ≡ −i δ

δfα(x)
ψ(f) . (19)

The operators f̂α(x) and π̂α(x) obey the canonical com-
mutation relations

[f̂α(x), π̂β(y)] = iδαβ δ
(3)(x− y) , (20)

where δαβ and δ(3)(x) are respectively the Kronecker sym-
bol and Dirac delta function.

We now consider an arbitrary analytic function H ′ of

the operators {f̂α(x)} and {π̂α(x)}:

H ′(f̂ , π̂) =
∑
n

∫
d3x1 d

3x2 . . . d
3y1 d

3y2 . . . × (21)

× Kβ1β2...
n α1α2...(x1,x2, . . . ;y1,y2, . . . ) ×

× f̂α1(x1)f̂α2(x2) . . . π̂β1
(y1)π̂β2

(y2) . . . .

To avoid ambiguities, we take only the functions H ′ such
that the sum (21) has a finite number of terms and these

terms contain a finite number of operators f̂α and π̂β .
Also we use only the kernels Kn that yield well-defined

convergent integrals in H ′(f̂ , π̂)ψ. For an infinitesimal
parameter dt we define

Û ≡ exp(−iĤ ′dt) = 1̂− iĤ ′dt+O(dt2) , (22)

where Ĥ ′ ≡ H ′(f̂ , π̂) of eq. (21) and 1̂ is the identity op-
erator. Further, let

f̂ ′α(dt,x) ≡ Û−1f̂α(x) Û ,

π̂′α(dt,x) ≡ Û−1π̂α(x) Û .
(23)

The similarity transformation (23) is canonical, i.e., it
preserves the commutation relations (20).

Now let us require Ĥ ′ to be Hermitian: Ĥ ′† = Ĥ ′. The
hermiticity imposes some straightforward constraints on
the kernels Kn in eq. (21) but the remaining freedom for
the choice of these kernels is still vast. The corresponding
operator Û then becomes unitary: Û−1 = Û†. Hence for

any function O(f̂ , π̂) and any state |ψ〉

〈ψ|O(f̂ ′, π̂′) |ψ〉 = 〈ψ| Û−1O(f̂ , π̂) Û |ψ〉 =

= 〈ψ′|O(f̂ , π̂) |ψ′〉 (24)

with

|ψ′〉 = Û |ψ〉 . (25)

If Ĥ ′ coincides with the physical Hamiltonian Ĥ of a
real-world system of fields then in the Schrodinger picture
of quantum mechanics the system that is initially in a
state |ψ〉 after a time span dt evolves into the state (25).

A. Freedom of evolution in the Heisenberg picture

In the Heisenberg picture of quantum mechanics |ψ〉
is static. Physical evolution is then manifested by the
change of the operators for observables, e.g., the energy-
momentum tensor, density of currents, field-strength ten-
sors, or their averages over finite regions. An observable
that at a time t corresponds to an operator

Ô = O(f̂ , π̂) (26)
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at a new time t+ dt is matched to

Ô′ = Û−1O(f̂ , π̂) Û = O(f̂ ′, π̂′) , (27)

where f̂ ′ and π̂′ are given by eqs. (23). The physical
state at the new time is the same state |ψ〉 that now is
regarded as a linear combination of the eigenstates of the
evolved observable Ô′.

We now make our first key observation. Let a Her-
mitian operator Ĥ ′ of eq. (21) differ from the physical

Hamiltonian Ĥ. Then the operator Ô′ of eq. (27), ob-

tained with Ĥ ′ through eq. (22), still remains a valid
Hermitian operator that is connected to the original ob-
servable Ô by a continuous group of similarity transfor-
mations, parameterized by dt ∈ R. For several observ-
ables Ôα the corresponding Ô′α, obtained through these
similarity transformations, satisfy the same commutation
relations as the original observables do. Then Ô′α are op-
erators for the original observables that have evolved by
our arbitrary Hermitian operator Ĥ ′, used as the Hamil-
tonian.

One may insist that in axiomatic quantum mechanics
a wave function should not be considered independently
from a specific Hamiltonian, Ĥ, of the studied physical
system. Yet even then we can in principle arrange a
measurement of |ψ〉 projections on the eigenstates of Ô′α,

obtained from the observables Ôα with Ĥ ′, provided that
all the fields that compose Ô′α are localized to an acces-
sible to us region. Let |1′〉 and |2′〉 be such eigenstates
with different eigenvalues. During the suggested mea-
surement the wave function of a studied subsystem (e.g.,
|ψ〉 = |1′〉+ |2′〉) and the rest of the system (|ext〉, rep-
resenting the measuring device, observer, and environ-
ment) changes as

|ψ〉|ext〉 =
(
|1′〉+ |2′〉

)
|ext〉 → |1′〉|ext1′〉+ |2′〉|ext2′〉 .

After a typical measurement the macroscopic states
|ext1′〉 and |ext2′〉 decohere. Therefore, all subsequent
observations in the considered system become confined
to either only the first or only the second branch on the
right-hand side of the above equation. Our observations
thus become identical to those expected for the evolution
of the original system |ψ〉 by the Hamiltonian Ĥ ′. Im-
portantly, this applies even when the system by definition
has a different Hamiltonian Ĥ.

The system |ψ〉 can be chosen to contain many internal
degrees of freedom that intercouple locally. The external
degrees of freedom, represented by |ext〉, can be suffi-
ciently remote so that the Everett branches |1′〉 and |2′〉
of the subsystem |ψ〉 decohere well before they split |ext〉
into different |ext1′〉 and |ext2′〉. Then the measurement
of |ψ〉 by |ext〉 should not affect the status of the branches
|1′〉 and |2′〉 of |ψ〉 as being “physically real” for any in-
ternal observer who is a part of the subsystem |ψ〉.

Most of arbitrary alternative “Hamiltonians” Ĥ ′ do
not possess pointer states [4, 7], stable to decoherence
and representing valid Everett’s branches. Yet for a typ-
ical system we could consider many Ĥ ′ that have pointer

states but deviate from Ĥ. For example, we could apply
Hamiltonians where particle masses and couplings change
slowly from their current values. If the quantum super-
position principle is a law of nature then the projections
of |ψ〉 on the evolving pointer states for the alternative

Hamiltonian Ĥ ′ represent the Everett branches of the
evolution that this Ĥ ′ generates. These branches should
be as real for their observers that will evolve from our
current state as our branch of evolution will be for our
future evolution.

Why, despite the presented arguments, the experi-
ments consistently indicate quantum evolution by only a
single and very specific Hamiltonian Ĥ that is constant
in time and space? We emphasize that we cannot resolve
this paradox by assuming a multitude of worlds that are
governed by all the conceivable Hamiltonians [20, 21].
The question concerns our own world. Why of all the
choices for quantum evolution that materialize here and
now, we live through only highly specific quantum dy-
namics that remains unchanged throughout spacetime?

B. Repeat in the Schrodinger picture

It is instructive and necessary for our further progress
to reformulate the same question in the framework of the
Schrodinger picture. Let at a time t the system be in a
pure state with a wave function ψ(f). By the Born rule of
standard quantum mechanics, |ψ(f)|2 is the probability
density in the configuration space {f}. We now consider
a function ψ′(f ′) that is obtained by some invertible con-
volution of ψ(f) with a kernel E(f ′, f):

ψ′(f ′) =

∫
df E(f ′, f)ψ(f). (28)

For any wave function ψ(f)∫
df |ψ(f)|2 =

∫
df ′ |ψ′(f ′)|2 (29)

whenever∫
df ′E∗(f ′, f1)E(f ′, f2) = δ(f1 − f2). (30)

The last condition states that the convolution with the
kernel E†(f ′, f) ≡ E∗(f, f ′) is the inverse of the convo-
lution (28).

Property (29) amounts to unitarity of the trans-
formation (28) with respect to the Hermitian prod-
uct (18). An infinitesimal unitary transformation (25)

with Û = exp[−iH ′(f̂ , π̂) dt] can also be presented in the
convolution form (28). This is achieved by the Feynman
path integral, yielding for an infinitesimal dt

ψ′(f ′) =

∫
df d̄π ei[(f

′−f)·π−H′(f,π) dt] ψ(f) . (31)

Here

f ·π ≡
∫
d3x

∑
α

fα(x)πα(x) (32)
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and the measure d̄π for a finite number of dynamical
variables is defined by eq. (7). When the wave function
depends on a function argument f = {fα(x)} then the
canonical momentum measure d̄π is defined by the con-
dition ∫

d̄π ei(f
′−f)·π = δ(f ′ − f) , (33)

generalizing eq. (10). We can verify the equivalence of
the Schrodinger transformation (25) and the path inte-
gral (31) by noting that the evolving wave functions for
both cases satisfy the same first-order differential equa-
tion

∂

∂t
ψ′ = −iĤ ′ ψ′ (34)

with the same initial condition ψ′|dt=0 = ψ.4

We now reformulate our first “key observation” in the
Schrodinger picture of quantum evolution. Let ψ be the
wave function of a physical system at a time t. Then we
consider its equivalent representation ψ′ from eq. (28)
using any convolution with the property (30). Such a
convolution can be obtained from an arbitrary Hamil-
tonian function H ′(f, π) by the path integral (31). Let

Ô = O(f̂ , π̂) be a Hermitian operator for an observable.
At the time t the probability of various values of this ob-
servable equals the squared norm of the projections of ψ
on the Ô eigenstates. But we are free to associate ψ′

and the squares of its projections on the Ô eigenstates
with a different time moment t′. Given the existence
of ψ, its transform (28) also exists (as the presentation
of the same physical state in another basis of the quan-
tum Hilbert space). This transform, i.e. another possible
presentation of the same state, is the Schrodinger-picture
wave function that has evolved from t to t′ by the arbi-
trarily chosen Hamiltonian H ′.

III. WAVE FUNCTION AS A FIT FOR THE
GENERIC UNDERLYING STRUCTURE

We now show that extremely simple, generic in nature
and ubiquitous in mathematics, static basic systems con-
tain as objectively existing composite entities the wave
functions of emergent physical systems. These wave func-
tions evolve unitarily and are related to probability of
outcomes of quantum processes observed by internal in-
habitants of the emergent systems. By studying instead
of an abstract, axiomatically defined wave function the
concrete tangible quantity with the identical properties
but simple real-world implementations, we will be able

4 Ĥ′ ≡ H′(f̂ , π̂) may contain products of non-commuting opera-

tors f̂ and π̂. Then for the equivalence of eqs. (25) and (31) we
order these products in the Hamiltonian operator (22) so that
all the momenta π̂ stand to the right, as shown in eq. (21).

to track down answers to several long-standing funda-
mental questions, including those listed in Sec. I. We will
also resolve why, despite the results of Sec. II, we ob-
serve as the physical evolution only relatively few linear
transformations that are generated by the fixed physical
Hamiltonian.

Consider a large but finite set of objects of any na-
ture and enumerate these objects by natural numbers
a = 1, 2, . . . , A. Suppose that every object of the set can
be characterized by a large number of properties. Con-
sider a finite number N of the properties and enumerate
them by n = 1, 2, . . . , N . Also suppose that these prop-
erties can be quantified by real numbers qna :

qna ≡
(

value of n-th property

for a-th object

)
. (35)

As one of countless examples for the respective qna , we
may think of all the quantifiable characteristics n of all
the planets a in the visible universe. We should, however,
remember that while this or other large collections of
macroscopic physical objects do contain emergent evolv-
ing systems whose internal physical laws coincide with
those of our physical world, the latter is unlikely to
emerge from its own objects. Nor we expect the basic
fundamental objects belong to any similar world with
space and time. Instead, it is more natural for the basic
structure that gives rise to our physical world to exist as
a self-contained static entity, unrelated to any external
spacetime or physical dynamics. We will discuss this in
Conclusion, Sec. X.

Let q ≡ (q1, q2, . . . ) ≡ {qn} be a vector of particular
values of the properties. Let ν(q) be the density of the
distribution of these values for the considered set of the
objects a:

ν(q) =
∑
a

δ(q − qa) . (36)

In other words, let the number of objects whose proper-
ties fall into a range ∆q be

∆a =

∫
∆q

dq ν(q) , (37)

where dq ≡
∏
n dq

n. For a chosen resolution ∆q, sup-
pose that an interval of width ∆q at any point q contains
many objects a. I.e., let in any such interval ∆a� 1
(see Fig. 1.a). In addition, suppose that the relative
change in ∆a for adjacent intervals is insignificant. Then
at the resolution ∆q we can approximate the exact dis-
tribution density ν(q) (36) by a smooth real fitting func-
tion ρ(q). This means that for any window function W (q)
with characteristic width no smaller than ∆q and for any
point q0, the smooth approximation ρ(q) satisfies∫

dqW (q − q0) ν(q) '
∫
dqW (q − q0) ρ(q) . (38)

Fig. 1.a shows that we may view ρ(q) as the distri-
bution ν(q) that is binned over cells ∆q. The cells are
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FIG. 1: An example of a one-dimensional distribution ν(q) of a certain property that can be quantified by a real value q (red
vertical lines). Panel a. shows the properties’ values q for various objects of some collection. These properties are binned over
intervals of equal width ∆q. The resulting histogram is fitted by a smooth function. Panel b. shows that the same distribution
can be described above certain resolution by a linear superposition of smooth functions of a specified shape with varying numeric
coefficients, spanning a real linear space. Its natural transition to the complex Hilbert space of quantum mechanics is described
in Sec. IV. Secs. V-VIII then demonstrate emergence of a specific Hamiltonian that for a similar multidimensional ν(q) (Fig. 2
on p. 13) generates an isolated group of isomorphism transformations of the respective Hilbert space. They constitute valid
physical evolution, which can be that of our observed world.

small in comparison to the width of W (q) yet every cell
still contains many objects. On the other hand, as illus-
trated by Fig. 1.b, we can also construct the smoothed
equivalent of the basic distribution by fitting it with a
superposition of smooth fitting functions fQ(q, t). Here t
labels various choices of a basis {fQ(q)} for the fitting
functions, whereas Q distinguishes the function members
of any particular basis. Thus we match

ν(q)→ ρ(q) ≡
∑
Q

ρ(Q, t) fQ(q, t) (39)

so that eq. (38) holds. Importantly, fQ(q, t) are not re-
quired to be localized around any particular value of q.

It may be tempting to associate the linear space
spanned by the linear combinations of the functions fQ(q)
from eq. (39) for a given t with the linear space of
quantum-mechanical wave functions. A change in the ba-
sis for the fitting functions, {fQ}t → {f ′Q}t′ , would then
constitute transition to a different representation of the
prospective wave function ρ(Q, t)→ ρ(Q, t′). However,
besides a minor and soon to be naturally lifted issue of
ρ being real while the physical wave function being com-
plex, the norm of a wave function should yield the phys-
ical probability.

The norm is specified by a Hermitian product 〈1|2〉 for
the functions that represent any physical states 1 and 2.
One might think of

∫
dq ρ1(q) ρ2(q) as a “natural” can-

didate for the product of ρ1 and ρ2; however, this as-
signment is unmotivated and, moreover, unacceptable.
The quantity

∫
dq ρ1ρ2 is different for various subjec-

tive choices of the arbitrary coordinates q. Therefore,
it cannot specify the objective5 physical probability, un-

5 Refs. [13–16] suggested that the probability may, on the con-
trary, be subjective. We will nevertheless see below that there
exists objective, description-independent probability for various
macroscopic branches of quantum evolution in the emergent sys-
tems.

related to our description of the system. Since the Her-
mitian product of quantum mechanics has unequivocal
physical meaning—it determines the probability of ob-
serving a particular branch of the wave function after a
measurement—to understand the emergence of the phys-
ical Hermitian product, let us understand the emergence
of the probability.

Suppose that in the course of physical evolution along
a continuous trajectory of alternative complete sets of
the basis functions fQ(q, t) in decomposition (39) a fit-
ting function ρ(Q, t) splits in, for simplicity, two terms
ρ1 + ρ2. Each of the terms represents a possible future
branch that looses coherence with the other one. By
repeating the splitting process R times, we arrive at a
superposition of 2R outcomes:

ρ = ρ11...1 + ρ21...1 + · · ·+ ρ22...2 . (40)

Let the splits be caused by quantum measurement, e.g.,
determining a projection of election spin. Correspond-
ingly, an individual term ρr1r2...rR (with ri ∈ {1, 2}) in
eq. (40) describes the measured system and its environ-
ment, including the observer, in the branch with a specific
sequence of measured results, (r1, r2, . . . , rR), Ref. [1].
Then the alternate branches, represented by the different
terms on the right-hand side of eq. (40), should be mutu-
ally orthogonal in the Hilbert space of the corresponding
emerging quantum mechanics. Indeed, first, a typical
quantum measurement splits the wave function of the
measured system along different non-degenerate eigen-
states of a Hermitian operator; therefore, these eigen-
states are necessarily orthogonal. For example, a mea-
surement of the vertical projection of the election spin
yields the orthogonal spin-up and spin-down states. Sec-
ond, for a system with many “environmental” degrees of
freedom, decoherence ensures that the products of differ-
ent Everett’s branches contribute to the density matrix
of the system negligibly [7].

Let ρ(q) be the linear combination (39) of smooth
functions fQ(q, t) that fits best the fundamental distri-
bution ν(q). Assuming a large but finite number of the
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basic objects {a}, let us bin the fundamental distribu-
tion ν(q), as illustrated by Fig. 1.a. Without limiting the
generality, we take bins of equal width ∆q. We suppose
that the number of the objects ∆ab in a bin b fluctuates
over the bins about a smoothly changing value

∆ab = ρ̄(qb) ∆q (41)

with the variance σ2(∆ab). The fluctuations can be
caused by deterministic defining properties of the struc-
ture ν(q), by the assignment of the numeric values of q, by
random shot noise, or by any of these reasons combined.
For the finite set of the basic objects there is an intrinsic
ambiguity in the value of the fitting coefficients ρ(Q, t)
and of the fitting function ρ(q). At most, we can find the
“best fitting function” that minimizes some artificially
chosen statistics. A simple, convenient choice is the χ2

statistics

χ2 =
∑
b

[∆ab − ρ(qb) ∆q]2

σ2(∆ab)
. (42)

With a different choice of bins, the best fit will somewhat
differ. However, let us consider only the binning choices
for which ∆ab � 1 yet ∆qb are smaller than the charac-
teristic variation scales of ρ(q). Then either a fit ρ(q) is
rejected at a statistically significant level for every such
binning, or it is an acceptable fit for every of them. Thus
within some unavoidable intrinsic uncertainty the notion
of ρ(q) fitting an underlying structure ν(q) is objective.

Let us introduce the variance density

v(q) ≡ σ2(∆a)

∆q
. (43)

Then the χ2 statistics (42) equals

χ2 =
∑
b

∆q

v(qb)

[
∆ab
∆q
− ρ(qb)

]2

. (44)

When ∆a for adjacent bins are uncorrelated then v(q) of
eq. (43) is independent of the bin width ∆q. Then ∆ab is
determined, at least locally, by the Poisson process with
the expectation value ∆ab of eq. (41). We assume this
from now on.

Consider a function

ρ(q) = ρ̄(q) + δρ(q) , (45)

where ρ̄(q) and δρ(q) vary insignificantly over an inter-
val ∆q, and

ρ̄(qb) = ∆ab/∆q . (46)

Since by the last equation 〈∆ab/∆q − ρ̄(qb)〉 = 0, eq. (44)
gives

χ2(ρ) = χ2(ρ̄) +
∑
b

∆q

v(qb)
[δρ(qb)]

2
. (47)

We replace the sum in the last term of eq. (47) by an
integral, yielding

δχ2(ρ) ≡ χ2(ρ)− χ2(ρ̄) '
∫

dq

v(q)
[δρ(q)]

2
. (48)

Let evolution in t split an overall fitting function ρ in
two terms ρ = ρ1 + ρ2 that eventually decohere. If the
terms ρ1 and ρ2 are orthogonal in the parameterization-
independent6 scalar product

〈1|2〉 =

∫
dq

v(q)
ρ1(q) ρ2(q) (49)

then 〈ρ|ρ〉 = 〈1|1〉+ 〈2|2〉. More generally, for repeated
measurements and multiple mutually orthogonal out-
comes ρi

〈ρ|ρ〉 =
∑

outcomes i

〈i|i〉 . (50)

Importantly, when a new branch ρi “thins” to the ex-
tent that its substitution to eq. (48) as δρ results in a
change δχ2 below a statistical significance limit δχ2

min

then the respective state |i〉 does not exist objectively.
Here the threshold value δχ2

min is defined as a borderline
between two qualitatively different situations:

a. Removal of ρi from the sum over alternate deco-
herent branches, e.g. in eq. (40), changes the confi-
dence level of the overall fit ρ by an order of unity,

vs.

b. Removal of the branch ρi does not affect the confi-
dence level of the fit ρ substantially.

It may be helpful to reformulate this as follows. The
discrete basic distribution ν(q) cannot be described by
a smooth approximation ρ(q) beyond certain accuracy
because once some threshold accuracy is exceeded, the
fitting function can no longer be smooth since the under-
lying discrete distribution ν(q) is not.

What happens with a new evolution branch ρi when

〈i|i〉 . δχ2
min , (51)

6 The right-hand side of eq. (49) is invariant under a change of the
configuration-space coordinates q = {qn}, quantifying the prop-
erties {n}. Indeed, after a coordinate change q → q′(q), we have

dq′ = J dq ,

where J ≡ |∂q′/∂q| is the Jacobian of the coordinate transforma-
tion. Then, since da = ρ dq = ρ′ dq′,

ρ′ = J−1ρ .

The variance density v(q) transforms as

v′ =
dσ2

dq′
= J−1v .

Thus the right-hand side of eq. (49) is manifestly invariant under
the coordinate change.
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where δχ2
min is the intrinsic uncertainty of unambigu-

ous determination of the fitting function ρ? After de-
coherence of the alternate macroscopic outcomes, such
a branch does not present an objectively existing path
of the system evolution. A quantum state ρi may be
discussed mathematically but it has no objective repre-
sentation through the objects of the basic structure. We
thus established that the squared norm of every physi-
cally meaningful term in eq. (50) should exceeds a posi-
tive threshold δχ2

min.
Any candidate for the physical probability should pos-

sess the conservation property (50). In the considered
emergent quantum systems, however, we calculate the
frequentist probability of the macroscopic physical out-
comes instead of postulating it. This will be the subject
of further Sec. IX.

We may build a full and consistent with experiment
quantum field theory of the observed world using the
scalar product (49). (Provided that we confirm its rela-
tion to the physical probability.) Historically, however,
the scalar product of quantum mechanics has been cho-
sen in the “canonical” form

〈1|2〉 =

∫
dq ψ1(q)ψ2(q) . (52)

(So far we use real functions ψ because the fitting func-
tion (39) is real. The next section shows that the stan-
dard complex wave function and canonical Hermitian
product arise for the emergent quantum systems auto-
matically.)

We convert the formulation of a quantum theory with
the parameterization-independent scalar product (49) to
the standard formulation with the canonical product (52)
by introducing a wave function

ψi(q) ≡ v−1/2(q) ρi(q) . (53)

By definition, v(q) is the variance density (43) for the
overall distribution ν(q). Since the factor v−1/2 is com-
mon to all the branches i, the functions ψi evolve linearly
if and only if ρi do. The fit (39) in terms of ψ reads

ν(q)→ ρ(q) =
∑
Q

ψ(Q, t)FQ(q, t) , (54)

where

FQ(q) = fQ(q) v1/2(q) . (55)

For arbitrary branches 1 and 2 at any given t the prod-
uct (49) becomes

〈1|2〉 =
∑
Q,Q′

ψ1(Q)MQQ′ ψ2(Q′) (56)

where

MQQ′ =

∫
dq

v(q)
FQ(q)FQ′(q) =

=

∫
dq fQ(q) fQ′(q) . (57)

The canonical form (52) follows whenever

MQQ′ =

∫
dq fQ fQ′ = δQQ′ , (58)

i.e., whenever fQ(q) is the convolution kernel of an or-
thogonal transformation.

We may view the wave function ψ(q) of eq. (53) as
a special case of the fitting coefficients ρ(Q) in the lin-
ear combination (39). Indeed, eq. (53) follows when
in eq. (54) we set FQ(q) = δ(Q− q) v1/2(q). Then by
eq. (55) we have fQ(q) = δ(Q− q). This is one of in-
finitely many basis choices that bring MQQ′ in the scalar
product (56) to the canonical identity-matrix form.

IV. EVOLVING WAVE FUNCTION AND FIELD
OPERATORS

We continue to explore emergent quantum systems
whose wave function by construction is a low-resolution
representation of a generic distribution. In this section
we manifestly see that these emergent systems automati-
cally possess such standard quantum-field-theoretical in-
gredients as a complex wave function, dynamical field
operators (acting linearly on the wave function), and
probability-related Hermitian product of the emergent
quantum states of the field operators. We also consider a
simple example of dynamical evolution for such a system.
This example cannot describe a reasonable physical world
but based on it we will find phenomenologically suitable
emergent systems in subsequent Secs. V-VIII.

A. Emergence of a complex wave function

The generic basic structure from Sec. III gives rise to a
quantum field theory as follows. Consider the emergent
wave function ψ(q) in any representation where the scalar
product has the canonical form (52). There exists its dual
representation that is formed by the superposition of the
“waves on ψ(q),” the waves that furnish the irreducible
representations of an abelian group of coordinate shifts

q → q′ = q −∆q, ∆q = const . (59)

The wave function ψ(q) in the dual representa-
tion is described by a two-component function of
p = (p1, p2, . . . , pN )

ψ(p) ≡

(
ψr(p)

ψi(p)

)
(60)

as

ψ(q) =

∫
d̄p (cos q·p , − sin q·p)

(
ψr(p)

ψi(p)

)
=

=

∫
d̄p Re

[
eiq·p ψ(p)

]
. (61)
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Above,

i ≡

(
0 −1

1 0

)
, q·p ≡

∑
n

qnpn , (62)

and the real-part function Re selects the upper compo-
nent of its two-component argument. Under a shift of
coordinates q (59) the values of ψ(p) transform as

ψ(p)→ ei∆q·p ψ(p) . (63)

Therefore, the two components ψr and ψi of ψ(p) for
every p form a 2-d real (1-d complex) representation of
the abelian group (59).

We may as well consider a representation that is dual
to the dual representation (60). In other words, we ex-
pand ψ(p) over the “waves on ψ(p)” that transform irre-
ducibly under the shifts of the coordinates p

p→ p′ = p−∆p, ∆p = const . (64)

This expansion,

ψ(p) =

∫
dq e−iq·p ψ(q) , (65)

leads naturally to the complex extension of the original
real wave function ψ(q). This is a manifestation of the
Pontryagin duality for the irreducible representations of
an abelian group.

In the physics language, for a real ψ(q), eq. (61) de-
fines not the entire ψr(p) and ψi(p) but only their parts
that are respectively even and odd under p→ −p reflec-
tion. Any odd contribution to ψr(p) does not change the
left-hand side of eq. (61), and neither does any even con-
tribution to ψi(p). Our emergent physical states are the
decoherent terms of the wave function natural splits by
its physical evolution as in eq. (40):

ψ = ψ11...1 + ψ21...1 + · · ·+ ψ22...2 . (66)

We continue to refer to two-outcome splits; the general-
ization to more than two orthogonal outcomes is straight-
forward. In the momentum representation the overall
sum for ψ(p) ≡ ψr(p) + iψi(p) in eq. (66), for a real ψ(q),
satisfies the constraint ψ(p) = ψ∗(−p). However, this
constraint for a global complex ψ(p) does not restrict the
individual terms on the right-hand side of eq. (66), corre-
sponding to individual Everett’s branches, which are iso-
lated in their future evolution dynamically. Then we also
need to represent the unconstrained complex ψ(p) of the
individual terms in the q-space. Their q-space represen-
tation is provided by a two-component or, equivalently,
a complex function

ψ(q) =

(
ψr(q)

ψi(q)

)
= ψr(q) + iψi(q) . (67)

This complex function is connected to ψ(p) by eq. (65)
and equals

ψ(q) =

∫
d̄p eiq·p ψ(p) ∈ C . (68)

We thus showed that by treating the q- and p-space rep-
resentations of the fitting functions (54) on equal footing
and by accounting for the Everett branching process (66)
we necessarily arrive at representing the individual deco-
hered branches of quantum evolution by a complex wave
function (67).

Yet not every linear transformation of the real wave
function ψ due to changing the basis in eq. (54) is linear
on the complex linear space. Let ψ → ψ′ with

ψ′ = Âψ , (69)

standing for(
ψ′r

ψ′i

)
=

(
Ârr Âri

Âir Âii

)(
ψr

ψi

)
(70)

where ψ(′)r,i are real and the operators Âαβ are linear.
Complex linearity,

Â (c1ψ1 + c2ψ2) = c1Âψ1 + c2Âψ2 (71)

for all c1, c2 ∈ C, holds if and only if the operator Â
commutes with the matrix i (62):

Â i = i Â . (72)

Thus for the complex linearity of operators it is necessary
and sufficient that

Ârr = Âii , Âri = −Âir . (73)

All the configuration-space coordinate and momentum
operators

q̂n = qn and p̂n = −i∂/∂qn (74)

satisfy this condition. Therefore, they are linear on the
complex linear space of the wave functions (67). The
same applies to any multinomial or analytic function of
the operators q̂n and p̂n.

B. Hermitian product

We now identify the unique probability-related Hermi-
tian product on the complex linear space of the dynam-
ically isolated terms of eq. (66) (or of a similar equation
for more than two decoherent outcomes of a quantum
process). Consider 〈ψ|ψ〉 in a representation where the
scalar product (49), which quantifies the state capacity
for future splits before the state stops representing any-
thing objectively existing, has the canonical form (52).
For a real wave function ψ(q) of eq. (61)

〈ψ|ψ〉 =

∫
dq ψ2(q) =

∫
d̄p
{

[ψr(p)]2 + [ψi(p)]2
}

=

=

∫
d̄p |ψ(p)|2 . (75)
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Likewise for a complex wave function ψ(q) of eq. (68),

〈ψ|ψ〉 =

∫
d̄p |ψ(p)|2 =

∫
dq |ψ(q)|2 . (76)

This measure of an emergent physical state objectively
quantifies the goodness of fit (54). As discussed in
Sec. IX, it determines the frequentist probability for an
intrinsic observer in the emergent system to follow the
particular Everett branch.

We look for a scalar product of complex wave func-
tions (67) in the general form

〈ψ1|ψ2〉 = (ψr1, ψ
i
1)

(
M̂rr M̂ri

M̂ir M̂ii

)(
ψr2

ψi2

)
∈ C , (77)

and we require two following properties:

1. The product (77) reduces to the physical mea-
sure (76) for ψ1 = ψ2.

2. This product is linear in its second argument on
the complex linear space (67):

〈ψ1|c ψ2〉 = c 〈ψ1|ψ2〉 ∀c ∈ C . (78)

These two requirements uniquely determine the linear op-
erators M̂αβ in eq. (77), yielding the canonical Hermitian
product

〈ψ1|ψ2〉 =

∫
dq ψ∗1(q)ψ2(q) , (79)

where the star denotes complex conjugation.

C. “Generic” wave function

Even without specifying the origin(s) of the underly-
ing basic structure, we anticipate that the fitting func-
tion ρ(q) of the distribution of its properties q takes a cer-
tain generic form. We, however, warn the reader that the
corresponding “generic” wave function ψ0 from eq. (82)
below is not necessarily the initial wave function of the
short-scale modes that appear from the Planck scale dur-
ing inflation. Their initial wave function is instead de-
termined by the considerations presented in Sec. VII E.
Whether or not we may call ψ0 “the global wave function
of the universe” is a matter of terminology. The actual
picture, studied in Sec. VII E, is more subtle.

Let q = {qn} be values of many quantifiable proper-
ties for a huge collection of objects of any nature. Then
the central limit theorem suggests that we may expect
the generic distribution of the properties to be Gaussian.
Of course, many (if not most) objects familiar to us are
distributed not by the Gaussian law. However, general
linear combinations of values of uncorrelated properties
of the familiar objects are Gaussian, at least, within the
conditions described by the central limit theorem of prob-
ability theory. In other words, for randomly selected ν(q)

FIG. 2: Visualization of a generic distribution of N arbi-
trary properties, and its fitting by a generic Gaussian func-
tion. The coordinates q3, . . . , qN , extending along other di-
mensions, are orthogonal mutually and orthogonal to the de-
picted plane (q1, q2).

that describe some underlying basic structure, the fitting
function ρ(q) has the generic form

ρ0 = A2e−q
2

. (80)

Here q2 ≡
∑
n(qn)2 where qn are appropriately normal-

ized uncorrelated linear combinations of the original co-
ordinates (35), Fig. 2, and a positive parameter A follows
from the normalization of the generic distribution.

Since for the locally-Poisson process, considered in
Sec. III,

v(q) ≡ dσ2

dq
= ρ(q) , (81)

the corresponding wave function (53) for the entire struc-
ture is also Gaussian:

ψ0 = Ae−q
2/2. (82)

This “generic” wave function, obtained from the fitting
function of the generic collection of arbitrary objects a,
has two suggestive properties. First, it would describe
the initial ground state (the Bunch-Davies vacuum [36])
of the field modes during inflation if the fields did not in-
teract. Second, it is invariant under the standard Fourier
transformation (9). Moreover, it is also invariant under
the fractional Fourier transformation (83-84), forming a
continuous group that arises naturally in the considered
structure as seen next.

D. Evolving field operators

Let us start from a single degree of freedom q ∈ R with
a wave function ψ(q). Consider a Lie group of transfor-
mations that continuously connects ψ(q) with ψ(p):

ψ → ψ′ = e−iĤdϕψ (83)
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where

Ĥ =
1

2

(
p̂2 + q̂2 − 1

)
, (84)

q̂ ψ(q) = q ψ(q), p̂ ψ(q) = −i ∂
∂q

ψ(q) . (85)

The infinitesimal Schrodinger transformation (83) is
equivalent to the following Heisenberg transformation of
the operators q̂ and p̂:

q̂ → eiĤdϕ q̂ e−iĤdϕ = q̂ + i[Ĥ, q̂] dϕ = q̂ + p̂ dϕ ,

p̂ → eiĤdϕ p̂ e−iĤdϕ = p̂+ i[Ĥ, p̂] dϕ = p̂− q̂ dϕ .
(86)

Then for a finite value of the transformation parameter ϕ

q̂ → q̂′ϕ = q̂ cosϕ+ p̂ sinϕ ,

p̂ → p̂′ϕ = −p̂ sinϕ+ q̂ cosϕ .
(87)

This Lie group of transformations includes the Fourier
transformation (ϕ = π/2) and the inverse Fourier trans-
formation (ϕ = −π/2). Since the Hamiltonian (84) anni-
hilates the Gaussian wave function ψ0 (82), the infinites-
imal transformation (83) and the entire Lie group gener-
ated by it leave ψ0 invariant.

Let us now investigate if the basic structure from
Sec. III could represent a free field theory. The emer-
gent generic wave function (82) might be considered for
giving rise to the vacuum state of a free field in a finite
region of space through the following simple construc-
tion. For simplicity, we set the space {x} to be a three-
dimensional cube 0 ≤ x, y, z ≤ L with coordinate volume
V = L3. We impose the periodic boundary conditions on
the cube sides, i.e., try to construct a quantum field in a
spatial region with torus topology.

Consider the following Hermitian linear combinations
of the basic operators q̂n and p̂n of eq. (74):

φ̂(x) ≡ 1

V 1/2

∑
m

1√
2ωm

(q̂cm coskm·x +

+ q̂sm sinkm·x)

(88)

where

km ≡
2π

L
m , (89)

m = (m1,m2,m3) runs over the sets of three integers
with |m1,2,3| < M/2, and q̂cm and q̂sm are the operators
of various uncorrelated coordinates qn of the system from
Sec. III, illustrated by Fig. 2.7 We will specify the pos-
itive real numbers ωm in eq. (88) later. In this and the

7 The terms with m = (0, 0, 0) ≡ 0 require special treatment, es-
pecially for a massless field. Yet for a large volume V any ob-
servable effects of those terms are negligible. We thus simply
disregard the m = 0 terms and remove from the sum (88), which
at this point is set at our will.

next section, until we promote the spacetime metric to a
dynamical degree of freedom in Sec. VI, for any spatial
vectors a and b by definition a·b ≡

∑
i aibi.

By k→ −k symmetry of the cosine and antisymme-
try of the sign terms in eq. (88) we can symmetrize q̂cm
and antisymmetrize q̂sm in m→ −m without changing
their sum. Therefore, without limiting generality, let us
require that

q̂c−m = q̂cm , q̂s−m = −q̂sm . (90)

The operators q̂cm and q̂sm in eq. (88) measure com-
muting, independent configuration-space coordinates.
Hence eq. (88) describes ordinary change of coordinates
in the configuration space from {qc,sm } to new coordi-
nates {φ(xn)}. For a complete set of the new indepen-
dent coordinates, it is convenient to take

xn ≡
L

M
n , (91)

n = (n1, n2, n3) with the integers 0 ≤ n1,2,3 < M .
Also consider a Hermitian momentum field operator

π̂(x) ≡ 1

V 1/2

∑
m

√
ωm

2
(p̂cm coskm·x −

− p̂sm sinkm·x)

(92)

where p̂c,sm = −i∂/∂qc,sm are the operators canonically con-
jugate to q̂c,sm . In terms of complex non-Hermitian oper-
ators

q̂m ≡
1√
2

(q̂cm + iq̂sm) , p̂m ≡
1√
2

(p̂cm + ip̂sm) (93)

eqs. (88) and (92) read

φ̂(x) =
1

V 1/2

∑
m

1
√
ωm

q̂me
ikm·x , (94)

π̂(x) =
1

V 1/2

∑
m

√
ωm p̂me

ikm·x . (95)

For the last two equations we used the m→ −m sym-
metry of the operators qc,sm and pc,sm . For the complex
operators (93) this symmetry yields

q̂−m = q̂†m , p̂−m = p̂†m . (96)

The operators q̂m and p̂m of eq. (93) satisfy the com-
mutation relations

[q̂m, p̂m′ ] = δm,−m′ ,

[q̂m, q̂m′ ] = [p̂m, p̂m′ ] = 0 .
(97)

Using these commutators, we see that for xn of eq. (91)

[φ̂(xn), π̂(xn′)] =
i

V
δn,n′ (98)

and for any two spatial points

[φ̂(x), φ̂(x′)] = [π̂(x), π̂(x′)] = 0 . (99)
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Let F̂ (x) be an operator field that is composed from

the operators φ̂(x) and π̂(x). We identify∫
V

d3x F̂ (x) ≡
(
L

M

)3∑
n

F̂ (xn) . (100)

We remember that here L3 = V and the sum has M3

terms. Then eq. (98) is equivalent to the canonical field
commutator

[φ̂(x), π̂(x′)] = iδ(3)(x− x′) , (101)

with the Dirac delta function defined for integral (100)
by the usual prescription (15).

Consider the evolution transformation (83) that is gen-
erated by the Hamiltonian8

Ĥ =
1

2

∑
m

ωm

2

∑
α=c,s

[
(p̂α)

2
+ (q̂α)

2 − 1
]

(102)

The Gaussian wave function ψ0 (82) is unchanged by this
evolution. It is the ground (smallest-eigenvalue) eigen-
state of the Hamiltonian (102).

We can introduce annihilation and creation operators

âm ≡
1√
2

(q̂m + ip̂m) ,

â†m =
1√
2

(
q̂†m − ip̂†m

)
=

1√
2

(q̂−m − ip̂−m) .
(103)

Then the Hamiltonian (102) equals

Ĥ =
∑
m

ωma
†
mam (104)

provided that ωm = ω−m. By eq. (97),

[âm, â
†
m′ ] = δm,m′ ,

[âm, âm′ ] = [â†m, â
†
m′ ] = 0 .

(105)

For all m,

âmψ0 = 0 . (106)

The Hamiltonian (104) yields the standard evolution
of the non-interacting theory. Specifically, for the anni-
hilation operators in the Heisenberg representation:

âm(t) = âme
−iωmt . (107)

Expressing q̂m and p̂m in eqs. (94–95) through âm
and â†m, we find that at a time t

φ̂(t,x) =

∫
d̄3k

1√
2ωk

(
âke

ikµx
µ

+ â†ke
−ikµxµ

)
, (108)

π̂(t,x) =

∫
d̄3k

√
ωk

2
(−i)

(
âke

ikµx
µ

− â†ke
−ikµxµ

)
. (109)

8 An additional factor 1/2 in eq. (102) corrects for counting every
cosine and sign mode twice, at m and −m.

Here kµ ≡ (ωk,k), we took M � 1, and we introduced a
continuous operator field

âk ≡ V 1/2âm(k) , (110)

with m(k) ≡ [kL/(2π)], where the brackets denote
rounding off to the nearest integer. For the continuous
annihilation operators (110)

[âk, â
†
k′ ] = δ̄(3)(k − k′) ,

[âk, âk′ ] = [â†k, â
†
k′ ] = 0 .

(111)

We now specify the frequency parameters ωk ≡ ωm(k).
For any choice of ωk, the fields (108–109) satisfy

∂tφ̂ = π̂ . (112)

The equation for ∂tπ̂ will also be local in x if we set

ω2
k = k2 + µ2 , (113)

where k2 ≡ k2
x + k2

y + k2
z and µ is a constant. Then

∂tπ̂ = (∇2 + µ2) φ̂ , (114)

where ∇2 ≡ ∂2
x + ∂2

y + ∂2
z . The Hamiltonian (104) can in

this case be expressed as the volume integral over local

Hamiltonian density H(φ̂(x), π̂(x)) ≡ Ĥ(x):

Ĥ =

∫
d3x Ĥ(x) , (115)

Ĥ(x) =
1

2

[
π̂2 + (∂φ̂)2 + µ2φ̂2

]
. (116)

Importantly, the field operators φ̂(x) and π̂(x) evolve
locally not only for the Hamiltonian above but also for
any local Hamiltonian (115) with an arbitrary, possi-

bly spacetime-dependent, function H(φ̂(x), π̂(x), x). Of
course, the Gaussian wave function ψ0 then generally is
no longer the ground state of the modified Hamiltonian.

Let us add to the free-field Hamiltonian density (116)
other local operators multiplied by spacetime-dependent
c-number coefficients. Let these coefficients start from
zero and change adiabatically to non-zero values over a
characteristic timescale T . Under the evolution by the
new Hamiltonian all the modes with frequency ω � T−1

will remain in the ground state. This shows that in order
to restrict the Hamiltonian to a specific form, it is insuf-
ficient to require the high-frequency modes to be in the
ground state and the evolution to be local.

The quantum non-interacting scalar field (88) could
be said in certain sense to exist within the generic struc-
ture ν(q), ubiquitously encountered in our surroundings.
Yet this “emergent” quantum system cannot be an objec-
tively existing physical world because its evolution by the
Hamiltonian (115–116) does not stand out from nearby
paths of its continuous evolution with arbitrarily mod-
ified Hamiltonians, local or non-local. In what follows
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we identify other ubiquitously present emergent quan-
tum field systems that do not blend with other, continu-
ously modified systems. Thus they are objective distinct
physical entities. These systems will possess such char-
acteristics of the world of ours as gauge and gravitational
interactions.

V. GAUGE FIELDS

A notable feature of the observed physical dynamics
is the high degree of its symmetry. In particular, the
dynamical field equations are invariant under vast groups
of local gauge and diffeomorphism transformations.

We continue to consider the Hilbert space that is con-
structed as described above from the linear combina-
tions (54) that smoothly fit the generic structure ν(q).
On this Hilbert space we will identify states and field
operators with the gauge and diffeomorphism symme-
tries. In this section we discuss the gauge symmetry and
in the next Sec. VI the diffeomorphism symmetry. In
Sec. VIII we show that the physical dynamics of emergent
fields with sufficient local symmetry, in particular local
supersymmetry, is unambiguous. These emergent sys-
tems thus represent distinct worlds with definite physical
laws. This suggests that of the various theoretically con-
ceivable quantum field theories only those with enough
symmetry are generically realized in collections of basic
objects as worlds suitable for developing intelligent life.

A. Gauge fields as degrees of freedom

We straightforwardly generalize the construction of a

free field φ̂(x) and its conjugate momentum field π̂(x) in

previous Sec. IV D to a pair of evolving free fields φ̂α(x),
with α = 1, 2, and the conjugate momenta π̂α(x). To this

end we simply substitute each of the operators q̂
c(or s)
m

in eq. (88) by two independent operators q̂
c(or s)α
m that

measure various uncorrelated coordinates qn of the basic
structure ν(q). We then proceed with the rest of the con-
struction for the two fields in full analogy with Sec. IV D.

For the pair of fields we may generalize the Hamilto-
nian density (116) to

H =
∑
α

1

2

[
π̂2
α + (∂φ̂α)2 + µ2(φ̂α)2

]
, (117)

where we set equal mass to both components φα. As
noted earlier, we can as well consider another path of
evolution of the wave function or, equivalently, of the
Heisenberg field operators. If such alternative evolution
is generated by a Hamiltonian that is a spatial integral

of a local function of the fields,
∫
d3x H(φ̂α(x), π̂α(x), x),

then the field dynamics remains local.
As a possible modification of the Hamiltonian den-

sity (117), let us consider

H =
∑
α

1

2

[
π̂2
α + (Dφ̂α)2 + µ2(φ̂α)2

]
(118)

where

Dφ̂α ≡ ∂φ̂α − iαβA(x)φ̂β (119)

and i is the 2×2 matrix (62). So far A(x) is an arbi-
trary three-component function on spacetime. It is not a
dynamical field operator yet.

The Hamiltonian density (118) is invariant under lo-
cal gauge transformation with a time-independent phase
change ϕ(x):

φ̂ ≡

(
φ̂1

φ̂2

)
→ φ̂ϕ = eiϕ(x)φ̂ , (120a)

π̂ ≡ (π̂1, π̂2) → π̂ϕ = π̂e−iϕ(x) , (120b)

A → Aϕ = A+ ∂ϕ . (120c)

Transformation (120a, 120b) is canonical for φ̂ and π̂.
It can be obtained through the similarity transforma-
tion (23) with an operator

Ûϕ = e−i
∫
d3xϕ(x)ĵ0(x) (121)

where

ĵ0 =
∑
α

∂φ̂αϕ
∂ϕ

π̂ϕα =
∑
α

(̂iφ̂)απ̂α . (122)

The gauge-rotated field φ̂ϕ(x) describes the same phys-
ical system in different coordinates of the configura-
tion space. The wave function ψ(φ) in the old coordi-
nates φ(x) is related to the wave function ψϕ(φϕ) in the
new coordinates φϕ(x) by a transformation

ψ → ψϕ = Ûϕψ . (123)

Evolution that in the old coordinates is specified by the
Hamiltonian density (118–119), in the new coordinates
is generated by the same Hamiltonian density but with
the gauge connection field A(x) in eq. (119) adjusted
according to eq. (120c).

Next we identify another quantum system that con-
tains additional physical degrees of freedom but is
likewise represented by the same smooth fitting func-
tions (39) for the generic basic distribution. We
start from the considered earlier emergent wave func-
tion ψ(φ1, φ2). It appeared as a description of the
smooth function ρ(qcαm , qsαm ) that fitted the basic struc-
ture ν(q). We then evolve the wave function ψ(φ1, φ2)
by the Hamiltonian (118–119) where now we let the
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field A(x) vary with other independent coordinates qn

of the same generic basic structure ν(q).

Similarly to eq. (88), we match some of the additional
coordinates qn to the transverse (gauge-invariant) modes
of the connection field A = AT + ∂ϕ, with ∂·AT = 0:

AT (x) =
1

V 1/2

∑
m,λ

εmλ√
2ωm

[
qcλm(q) coskm·x +

+ qsλm(q) sinkm·x
]
. (124)

Here λ ∈ {1, 2}, εmλ· εmλ′ = δλλ′ , km· εmλ = 0, and

q
c(or s)λ
m (q) are some linearly-independent functions.

Now any value of q specifies a scalar field config-
uration φ(x) (88) and a transverse field configura-
tion AT (x) (124).

We do not promote for a physical degree of freedom
the longitudinal (gauge-dependent) part ∂ϕ of A(x),
i.e., the connection field modes with polarization
εm3 = km/|km|. Instead we regard gauge-equivalent
configurations (120) as describing the same physical sys-
tem in various coordinate frames of the configuration
space. We then can impose any longitudinal poten-
tial ϕ(x), indicating the frame used.

In the frame that corresponds to the “radiation gauge”
∂·A = 0 we have A = AT . Setting this gauge, let us de-
termine an emergent wave function ψ(φ,AT ), or equiv-
alently ψ(qcαm , qsαm , qcλm , qsλm). In the preceding sections
the dependence of the wave function on the scalar field
modes qcαm and qsαm followed from the assignment (53).
It brought the physically motivated scalar product to
the standard form (52). Accepting for now this form
of the wave function for its scalar field argument, we are
still seemingly free to match the modes of the connection
field (124) to any functions qcλm(q) and qsλm(q) of the basic
coordinates q of the underlying structure.

Moreover, given a structure ν(q), we can consider an
ensemble V ≡ (ν, ν, . . . ). In it we may arbitrarily impose
its own connection AT (x) on every member of this en-
semble. In the ensemble V the coordinates qcλm and qsλm
extend along the dimensions that we have “created” by
considering the multiple copies of the fundamental struc-
ture ν(q). Then even if the dependence of the wave func-
tion on φ could somehow be fixed, its dependence on AT

can still be set arbitrarily by our choice.

If, by nature of ν(q) objects, their properties q range
over a finite set of discrete values then the choice of dis-
tinct evolution flows, characterized by different AT , can
also be finite. If so, we could contemplate matching the
physical world to the ensemble that contains all the dis-
tinct possibilities for the evolution. However, first, it is
unclear if the resulting dependence of ψ on AT would
then be of any generic form, insensitive to the allowed
values of the objects’ properties q (in some natural co-
ordinates). Second, we will see in Sec. VII E that the
physical world that develops through inflationary expan-
sion can evolve from only a specific wave function for the
high-energy modes.

Therefore, it does not matter whether or not the set of
all the evolution flows has a generic form. In either case,
the physical states that resemble or represent our world
evolve from only a special ensemble of evolution flows.
Indistinguishably, such antropically and phenomenolog-
ically acceptable states evolve from only certain special
matching ofAT modes to the independent coordinates qn

in eq. (124).9

B. Wave function is constant on gauge orbits

In the standard axiomatically formulated gauge the-
ories not only the action but also the wave function is
necessarily gauge invariant. The gauge symmetry of the
wave function is required for theory consistency. It con-
stitutes the so-called “secondary constraint.” We demon-
strate this explicitly in Appendix A, eq. (A16), for locally
Lorentz-invariant renormalizable theories with arbitrary
abelian or non-abelian gauge symmetry.

Let us investigate how a wave function can be gauge
invariant in a theory that is a low-resolution description
of the generic basic structure ν(q). In the radiation gauge
(∂·A = 0), regarded by Sec. V A as a certain coordi-
nate frame in the configuration space, we describe the
emergent physical system by a wave function ψ(φ,AT )
as discussed in the previous subsection. In another gauge
(frame of the configuration space) with

A = AT + ∂ϕ (125)

the scalar field is measured by the operator φ̂ϕ of
eq. (120a). In this frame we use the wave func-
tion ψ(φϕ,A), the dynamical variables of which are the
transformed scalar field φϕ and the gauge-invariant trans-
verse modes of A, given by eq. (124). The wave functions
ψ(φ,AT ) and ψ(φϕ,A) are the projections of the same
state on two unitarily-equivalent sets of basis vectors in
the Hilbert space. These wave functions are related by
the linear transformation (123) with Ûϕ of eqs. (121–122).

We rewrite this Ûϕ as

Ûϕ = exp

{
−
∫
d3xϕ(x) (̂iφ̂)α

δ

δφα(x)

}
. (126)

Then, by the above,

ψ(φ,A) = Ûϕψ(φ,AT ) = ψ(e−îϕφ,AT ) . (127)

9 Incidentally, we could make the same arguments about the de-
pendence of ψ on the scalar field φ. We will return to this point in
Sec. VII E. We will find that the “generic” Gaussian wave func-
tion ψ0 (82) indeed does not need to describe the high-energy
modes of the scalar field. However, it will appear most appro-
priate to regard the inflationary-suitable wave function of the
matter fields as a certain transformation of ψ0.
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Equivalently,

ψ(eîϕφ,AT + ∂ϕ) = ψ(φ,AT ) . (128)

Thus the considered wave function ψ(φ,A) has the same
value at every point (φ,A) of an orbit of the gauge
group (120).

Differentiation of both sides of eq. (128) over ϕ yields

(ĵ0 − ∂iπ̂i)ψ = 0 , (129)

where

ĵ0(x) = −i(̂iφ)α
δ

δφα(x)
(130)

is the operator of current density (122), and π̂i(x) are
the operators of the momenta conjugate to Ai(x),

π̂i ψ(φ,A) ≡ −i δ

δAi(x)
ψ(φ,A). (131)

The operator ĵ0 − ∂iπ̂i of eq. (129) generates the gauge

transformation (120). Indeed, let Ô be any of the opera-

tors φ̂α, π̂α, Â, or their arbitrary function. If Ôϕ is the

result of Ô gauge transformation (120) then

δÔϕ
δϕ(x)

= [ĵ0 − ∂iπ̂i(x), Ôϕ] . (132)

Therefore, eq. (129) can be used interchangeably with
eq. (128) to express the constancy of the wave function
along the gauge orbits.

C. Four-vector gauge field and Hamiltonian

We continue to study an emergent quantum system
whose dynamical variables are the scalar fields φα(x)
and the transverse components of the vector connection
field A(x). For this system we need to extend the scalar-
field Hamiltonian density (118) to one that also specifies
the evolution of the dynamical degrees of freedom AT .
Every such extension generates a continuous group of
evolution transformations of the wave function (or of the
Heisenberg field operators). By reasons to be explained
in full in Sec. VIII, we focus attention on the follow-
ing narrow class of these choices. Foremost, we consider

only the evolution under which the scalar fields φ̂α(x)
and their conjugate momenta π̂α(x) evolve locally in
space {x}. We need this because the gauge connection A
exists only in relation to such local evolution, generated
by a Hamiltonian density such as (118). Likewise, we

explore only local evolution of the connection Â(x) be-
cause of anticipating other, gravitational physical degrees
of freedom whose existence is tied to the locality of evo-
lution of all the elementary fields, Sec. VI.

Thus our Hamiltonian is a spatial integral of a Hamil-
tonian density Ĥ(x) that is a function of the field and mo-
mentum operators at x or of their spatial derivatives at x.

We explore only the Hamiltonians that in addition to be-
ing local and gauge-invariant are renormalizable. The re-
quirement of renormalizability for the matter and gauge
fields well below the Planck energy scale stems from the
usual considerations that the renormalizable theories are
a generic low-energy limit of arbitrary field theories [37].
Finally, we require that for the Minkowski metric, used
so far, the field operators evolve by Lorentz-invariant
equations. We will justify local Lorentz invariance in
Sec. VIII.

Let Ĥ = H(φ̂α, π̂α, Âi, π̂
i) be some Hamiltonian den-

sity that satisfies the stated requirements. Then, for any
function A0(x), another Hamiltonian density

Ĥ′ ≡ Ĥ+A0(x) (ĵ0 − ∂iπ̂i) (133)

yields the same Schrodinger evolution of the wave func-
tion due to eq. (129):

dψ = −idtĤ ′ψ = −idtĤψ . (134)

Eq. (132) shows that the additional transformation

−idt(Ĥ ′ − Ĥ)ψ = −idt
∫
d3xA0 (ĵ0 − ∂iπ̂i)ψ

is the gauge transformation with

dϕ(x) = dtA0(x) . (135)

By eq. (129), the gauge transformation does not affect the
wave function ψ, but it does change field operators. The

Heisenberg operator φ̂(t,x) evolves under the modified

Hamiltonian Ĥ ′ as

∂φ̂

∂t
= i[Ĥ ′, φ̂] = i[Ĥ, φ̂] + iA0φ̂ . (136)

Introducing a gauge-covariant 4-derivative

Dµ = ∂µ − îAµ , (137)

we rewrite eq. (136) as

D0φ̂ = i[Ĥ, φ̂] . (138)

Thus the c-number field A0(x) is indeed the tempo-
ral component of the 4-vector connection Aµ = (A0,A).
The gauge-covariant eq. (138) describes evolution of the

field φ̂ in any gauge, with an arbitrary ϕ(t,x).
The gauge transformation of A0,

A0 → A0 + ∂0ϕ , (139)

follows from eq. (135). Indeed, the field operators at t
that are gauge-transformed by ϕ(t) and at t + dt that
are transformed by ϕ(t+ dt) become connected through
eq. (135) by A0 that is adjusted by eq. (139).

Since for the evolution by Ĥ ′

∂Âi
∂t

= i[Ĥ ′, Âi] = i[Ĥ, Âi] + îA0 , (140)
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we also have

F̂0i = i[Ĥ, Âi] , (141)

where Fµν = ∂µAν − ∂νAµ is the gauge-invariant field-
strength tensor of the considered abelian gauge theory.

It is much easier to explore the possible laws of
Lorentz-invariant canonical evolution in the Lagrangian
description. A local Hamiltonian (115) leads to a local ac-
tion S =

∫
d4xL(x). This action gives Lorentz-covariant

field equations, e.g. [38], whenever the Lagrangian den-
sity L is a 4-scalar function of the fields φ and Aµ, or of
their spacetime derivatives.

In the presented view of quantum evolution as a se-
quence of alternative linear representations of a fitting
function (54), the action formalism corresponds to the
description of evolution by the convolution (28). It spec-
ifies the Schrodinger evolution of a wave function by the
Feynman path integral, eq. (31). When the Hamiltonian
is at most quadratic in the momenta fields then in eq. (31)
we explicitly integrate over d̄π with the result

ψ′(f ′) =

∫
[df ] ei

∫
d3xL(ḟ ,f)dt ψ(f) . (142)

Here f = {fα} denotes all the dynamical fields,

ḟ = (f ′ − f)/dt, and the path-integral measure [df ], as
usually, absorbs the constants from the integration in
eq. (31) over the independent momenta παn ≡ πα(xn)
[cf. eq. (100)].

In Appendix B we explicitly write the Hamiltonian
that follows from the general locally Lorentz-invariant,
renormalizable, local action of bosonic fields with an ar-
bitrary gauge symmetry, abelian or non-abelian. We then
map the basic coordinates qn to the modes of the scalar
and gauge fields φα and Aai modulus their joint gauge
transformation similarly to the earlier case of the abelian
theory in flat spacetime. Transformation

ψ → e−i(Ĥ
φ+ĤA)dt ψ (143)

with the Hamiltonian of eqs. (B3–B10) gives us the
Schrodinger wave function of the general abelian or non-
abelian gauge field theory at various moments of time.

VI. GENERAL COVARIANCE AND QUANTUM
GRAVITY

We continue to analyze quantum field systems that ex-
ist as a low-resolution representation of the commonly
encountered static structure ν(q). In this section we
consider emergent field systems that are symmetric un-
der diffeomorphism transformations. The latter canon-

ically transform Heisenberg field operators f̂(x), where
x ≡ (t,x), to

f̂ ′(x) = Û−1
ε f̂(x) Ûε . (144)

For any infinitesimal 4-vector “displacement” parame-

ter field εµ(x), the change δεf̂ ≡ f̂ ′(x)− f̂(x) under the
diffeomorphism transformation of a scalar, vector, or
higher-tensor field is by definition the field Lie deriva-
tive along εµ. For example,

δεφ̂ = Lεφ̂ = ελφ̂,λ

δεÂµ = LεÂµ = ελÂµ,λ + ελ,µÂλ
δεĝµν = Lεĝµν = ελĝµν,λ + ελ,µĝλν + ελ,ν ĝµλ .

(145)

The transformed field operator f̂ ′(x) describes the phys-
ical system in a new spacetime coordinate frame, shifted
relative to the old one by ∆xµ = εµ(x). In the new frame

φ̂′(x′) = φ̂(x), Â′µ(x′) =
∂xν

∂x′µ
Âν(x), . . . (146)

with

x′ = x− ε. (147)

We will confirm that the Hamiltonian of a
diffeomorphism-invariant (generally covariant) physical
system should be in a special form (157). For such a
system it will be possible to identify a field operator with
the interpretation of a spatial metric tensor. Invariance
to spatial diffeomorphism transformations, forming a
subgroup of the spacetime diffeomorphism group (145),
requires the constancy of the wave function on orbits
of spatial diffeomorphism. Thus, similarly to the gauge
symmetry, the independent coordinates qn of the basic
structure should now be mapped to the entire orbits
of the spatial diffeomorphism group. This section and
Appendix B explicitly demonstrate the existence of
scalar, gauge vector, and gravitational tensor quantum
fields that evolve by generally covariant laws and are
represented by fitting functions for the generic basic
distribution ν(q). The question of why general covari-
ance applies to the physical world that we live in will be
addressed in further Sec. VIII.

A. Hamiltonian for general covariance

To find emergent quantum systems with
diffeomorphism-invariant evolution we evoke an ar-
gument presented by Dirac [39] for the Hamiltonian
formulation of classical general relativity. We use the
more modern ADM notation (5) [34, 35]. We also
remember that the dynamical variables in the considered
here quantum case are described by operators.

Let η̂ be an operator for a prospective observable that

is a function of the dynamical fields f̂α(x) at a common
time x0. The function

η̂ ≡ η(f̂α) (148)

may or may not be localized at one spatial point x. For
the infinitesimal diffeomorphism transformation with a
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displacement parameter field εµ(x) we have

δη̂ =

∫
d3x εµ(x) ξ̂µ(x), (149)

where ξ̂µ do not depend on εµ. We require that the op-

erator Ûε of eq. (144) preserves the canonical form of the
Hermitian product (79) and is therefore unitary. Then
for an infinitesimal εµ we should take

Ûε = e−i
∫
d3x εµ(x) Ĥµ(x) (150)

where Ĥµ are Hermitian operators that are independent
of εµ. Comparing eqs. (144, 150) and eq. (149) we see
that

δη̂

δεµ(x)
= ξ̂µ(x) = i[Ĥµ(x), η] . (151)

Similarly to the “normal” evolution with Aa0 = 0 for
gauge-symmetric systems in eq. (A13), we set a normal
unit temporal displacement field nµ(x). In close anal-
ogy to the gauge symmetry, we can then use symmetry
considerations to extend the evolution along the normal
direction nµ(x) to diffeomorphism-equivalent evolution
for another displacement εµ(x).

To this end we decompose the arbitrary displacement
vector εµ(x) into normal and tangential components as

εµ = [Cnµ + (0,C)] dt , (152)

where the normalization of the vector in the brackets is
arbitrary. We extend our spatial coordinates {x} to other
times t 6= x0 along the vector field εµ(x), and we set the
time coordinate as t ≡ x0 + dt, with dt from eq. (152).
In the introduced spacetime coordinates

εµ(x) = (1,0) dt . (153)

In a generally covariant theory we should be able to
provide a normal unit vector nµ for every spatial hyper-
surface. Therefore, we should have the concept of the
metric tensor. Let the metric tensor in the coordinate
frame (153) be parameterized by the ADM lapse N(x)
and shift N i(x), as given by eq. (5). The unit vector nµ,
normal in the metric (5) to the dt = 0 hypersurface, then
equals

nµ = (−N,0) , nµ =

(
1

N
,−N

i

N

)
. (154)

Hence the displacement εµ of eq. (152) takes the
form (153) when C = N and Ci = N i, giving

εµ = [Nnµ + (0, N i)] dt = (Nn0, Nni +N i) dt. (155)

Then by eqs. (149,155,151),

δη̂ = i[Ĥ, η̂] dt (156)

with

Ĥ =

∫
d3x

(
N ĤN +N iĤi

)
≡

≡
∫
d3x NαĤα , (157)

where ĤN = nµĤµ, Nα ≡ (N,N i), and Ĥα ≡ (ĤN , Ĥi).
(In these notations Hµ=0 generally differs from

Hα=0 ≡ ĤN . The former is the temporal component of
the Hamiltonian density and the latter is its normal com-
ponent.)

B. Spatial diffeomorphism invariance

The observed physical evolution is generally covariant;
therefore, it is also 3-diffeomorphism invariant. In other
words, its laws are invariant under a general change of
spatial coordinates x→ x− ε, with simultaneous local
rotation of the fields according to their 3-tensor rank. It
infinitesimally changes the dynamical fields by their Lie
derivative along the spatial displacement field ε(x), i.e.,
by the 3-dimensional equivalent of eq. (145).

The diffeomorphism invariance (for either 3 or 4 dimen-
sions) could be achieved directly by introducing the affine
connections and promoting them to quantum operators.
This would lead us to the Einstein-Cartan theory [40].
However, we can reduce the number of new independent
geometrical degrees of freedom by requiring the Einstein
equivalence principle. Under it, the connections Γλµν are
metric-compatible (gµν;λ = 0) and symmetric. It is then
sufficient to follow the machinery of general relativity and
use only our metric tensor to construct the symmetric
Christoffel symbols and an invariant action, yielding the
required Hamiltonian. This procedure fails to incorpo-
rate covariantly half-integer spins, to be discussed in a
later paper about fermions. But for the bosonic integer-
spin fields, studied here, we build a generally covariant
theory where all the independent geometrical degrees of
freedom are only certain components of the metric ten-
sor.

We thus implement 3-covariance by introducing new,
geometrical, degrees of freedom that are described by a 3-
metric tensor field operator γ̂ij(x). We add these degrees
of freedom in full analogy with introduction of the gauge
degrees of freedom Âi in Sec. V. Namely, we consider vari-

ous evolution paths of the matter fields, here (φ̂, Âi), that

are generated by Hamiltonians Hm(φ̂, Âi, π̂φ, π̂Ai , γij) for
the matter. The last argument, γij(x), is here a pa-
rameter field that by definition enters Hm as expected
for the spatial metric in a Hamiltonian obtained from a
diffeomorphism-invariant action, cf. Appendix B. Then,
as shown next, similarly to the gauge symmetry, we map
some components of γij(x) to “unused” independent co-
ordinates qn of the basic structure ν(q) (or of the cor-
responding ensemble V, Sec. V A). These independent
coordinates will then represent the geometrical degrees
of freedom.
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C. Spacetime diffeomorphism invariance

In a generally covariant theory, at a given fixed time,
the same wave function should specify the initial state
for evolution with every conceivable lapse and shift Nα

of the displacement (155). Therefore, the wave function
should be independent of Nα. The change of the wave
function due to evolution, −idtĤψ, should not introduce
the dependence on Nα either. This yields the Hamilto-
nian and momentum constraints [32] of quantum gravity:

Ĥαψ = 0 . (158)

As seen from eq. (B15), the momentum con-

straints, Ĥiψ = 0, express constancy of the wave func-
tion ψ(φ,Ai, γij) on the orbits of 3-diffeomorphism trans-
formations of φ, Ai and γij , Ref. [32, 41]. We can use
these symmetry transformations to remove 3 of the 6 in-
dependent components of the symmetric tensor γij , for
example, as follows. Spatial diffeomorphism transforma-
tion changes the 3-metric tensor as

δεγij = Lεγij = ε(i|j) , (159)

where εi = γijε
j , | indicates 3-covariant derivative, and

parentheses denote symmetrization. We then determine
3 functions εi(x) for which the transformation (159)
brings 3 components of γij to some standard form
(amounting to a gauge condition). By the momentum
constraints, this does not affect the wave function ψ.

We now turn attention to the Hamiltonian constraint,
ĤNψ = 0. Let us define a scale factor a(x) by

γij ≡ a2hij , dethij ≡ 1 . (160)

The Hamiltonian constraint relates the values of ψ at dif-
ferent a(x) [cf. the Wheeler-DeWitt equation (174) be-
low]. Then only 2 components of γij remain independent
and need to be mapped to the basic coordinates q sim-
ilarly to eq. (124). Thus we can regard a(x) as another
arbitrary transformation parameter, analogous to ϕ(x)
and εi(x).

Quantitative exploration of generally covariant dy-
namics is much simpler in the Lagrangian formulation
of the theory. Consider a local gauge-invariant and
diffeomorphism-invariant action [for m2

P ≡ (8πG)−1 ≡ 1]

S ≡
∫
d4x

[√
−g
2

R−
∑
s

√
−g

4e2
s

F saµνF
sa µν +

+ Lφ(Dµφ, φ, gµν)

]
, (161)

where R is the Riemann curvature scalar, e2
s are the

gauge couplings (possibly different for different sim-
ple subgroups s of the overall gauge group), and
Sφ ≡

∫
d4xLφ is invariant under both the gauge and

diffeomorphism transformations. We consider only the
renormalizable terms for the matter part of the action

because they are generic at sub-Planckian energy [37].
For the same reason, for the gravitational part of the La-
grangian density we take R, which is the Lorenz-invariant
combination of the metric fields and their derivatives
with the lowest energy dimension.

The Hamiltonian for the gravitational part of this ac-
tion, the Riemann action

Sg =

∫
d4x

√
−g
2

R , (162)

is [32, 39]

Hg =

∫
d3x NαHgα(πij , γij) , (163)

where πij are the operators of the momenta conjugate to
the 3-metric γij ,

πij(x) = −i δ

δγij(x)
, (164)

and Hgα = (HgN , γijHgj) with [32, 39]

HgN = GAB π
AπB − 1

2

√
γ (3)R , (165)

Hgi = −2πij |j . (166)

In eq. (165) A and B run over all the pairs ij,

Gij kl ≡
1
√
γ

(γikγjl + γilγjk − γijγkl) , (167)

(3)R is the Riemann curvature scalar for the 3-metric γij ,
and γ ≡ det γij . For cleaner formulas, we no longer place
hats above quantum operators.

Appendix B explicitly demonstrates that the full
Hamiltonian that follows from the action (161) is indeed
of the form

H =

∫
d3xNαHα . (168)

Here

Hα = Hgα +HAα +Hφα (169)

are local functions of only the fields f = (γij , A
a
i , φ

α), of
their spatial derivatives, and of the conjugate momenta
fields.

Appendix B also shows that

e−i
∫
d3xNiHiψ(f) = ψ(f − LNf) . (170)

The corresponding adjoint transformation (144) with

εµ = (0,N) transports the field operators f̂(x) in space
by eqs. (145). Since the wave function by construction
satisfies the momentum constraints Hiψ = 0, eq. (170)
shows that the wave function is invariant under the spa-
tial displacement of the fields:

ψ(f) = ψ(f − LNf) . (171)



22

By the Hamiltonian constraint HNψ = 0, the to-
tal Hamiltonian (168) for the general N(x) also an-
nihilates the wave function. While the corresponding
Schrodinger equation then would show no dependence
of ψ on time, the Hamiltonian constraint itself specifies
ψ evolution [32]. The role of evolution time is now for-
mally10 taken by the metric scale factor a(x) of eq. (160).
Indeed, Appendix A of Ref. [32] proves that the operator

GAB π
AπB = −GAB

δ2

δγA δγB
(172)

in the gravitational Hamiltonian density (165) is a hyper-
bolic Laplacian operator with signature (−+ + + ++).
The scale factor a corresponds to the “timelike” coordi-
nate of the six coordinates γA at every x. Namely, from
Ref. [32]

GAB π
AπB =

1

24a

δ2

δa2
− ḠĀB̄

δ2

δζĀ δζB̄
(173)

where ḠĀB̄ is positive definite and ζĀ are five indepen-
dent coordinates that parameterize hij of eq. (160). The
Hamiltonian constraint, which is the Wheeler-DeWitt
equation with matter(

1

24a

δ2

δa2
− ḠĀB̄

δ2

δζĀ δζB̄
− 1

2

√
γ (3)R+

+ HAN +HφN
)
ψ = 0 , (174)

is thus a hyperbolic equation. As such, it has
a unique solution for any initial ψ(φ,Ai, hij , a)
and δψ(φ,Ai, hij , a)/δa at some a = a0(x).

We can now identify smooth fitting functions of the
generic basic distribution ν(q) that represent the evolving
states of quantum fields in the quasiclassical spacetime of
an eternally inflating universe. This is the primary goal
of the section next.

VII. EMERGENCE OF THE PHYSICAL
WORLD AND INITIAL CONDITIONS

We begin this section with a detailed analysis of how
some solutions of the Wheeler-DeWitt equation with
matter (174) represent quasiclassical motion of macro-
scopic degrees of freedom. We then reduce that equa-
tion to the Schrodinger equation of quantum evolution
on smaller scales. In principle, we could follow either
of two formally equivalent approaches. In Appendix C

10 Matching the formal quantum-gravitational evolution in a(x)
to the observed evolution in quasiclassical physical time is by no
means straightforward. This is discussed in Refs. [32, 41, 42] and
further in Sec. VII.

we review a historically more early “Hamiltonian” ap-
proach [41]. However, we also see that despite offering
helpful intuition, this formalism runs into technical com-
plications that make it less practical for specific appli-
cations. In Sec. VII C of the main text we use a more
modern “Lagrangian” approach. It allows us to directly
incorporate the requirements of the general covariance
and offers relatively simple evolution equations. Then
matching the full matter and gravitational dynamics to
the fitting functions for the generic basic structure be-
comes straightforward.

A. Emergence of classical trajectories

As discussed the previous section, a suitable evo-
lution parameter for a solution of the Wheeler-
DeWitt equation (174) is the conformal scale fac-
tor a(x) of eq. (160). We write solutions of the
Wheeler-DeWitt equation symbolically as ψ(f) where
now f ≡ (φ,Ai, hij , a) ≡ (φ,Ai, γij). Given initial ψ
and δψ/δa for all (φ,Ai, hij) at some a = a0, the
Wheeler-DeWitt equation (174) specifies ψ(f) at all
other configurations a(x).

Let us split the fields f(x) into two terms

fa(x) = f̄a(x) + f̃a(x) (175)

as follows. Let f̄ contain all the modes whose spatial
wavelength at some reference moment is larger than a
certain borderline value, and let f̃ contain all the remain-
ing modes. We will specify the borderline wavelength
later. The variables f̄ will represent coherent motion on
macroscopic scales. The energy and De-Broyle frequency
of this motion will typically exceed the Planck energy by
orders of magnitude.

Among various solutions ψ(f̄ , f̃) of the Wheeler-
DeWitt equation (174) let us consider the ones in which
the “macroscopic” degrees of freedom f̄ are quasiclassi-
cal. We start with the quasiclassical ansatz

ψ(f̄ , f̃) = A(f̄) eiS(f̄) ψ̃(f̄ , f̃) , (176)

where A(f̄) and S(f̄) are real, but ψ̃(f̄ , f̃) can be com-
plex. The wave function (176) is quasiclassical in f̄ when

the phase rate of change, δS/δf̄ , and the prefactor, Aψ̃,
vary negligibly in f̄ over the increments ∆f̄ that give
∆S ∼ 1.

We set the real functions S(f̄) and A(f̄) in eq. (176)
to be respectively the phase and the amplitude of the
“background” solution

ψ̄(f̄) = A(f̄) eiS(f̄) , (177)

solving

H̄α(f̄ , π̄) ψ̄(f̄) = 0 . (178)

Here H̄α is obtained from Hα(f̄ + f̃ , π̄, π̃) by dropping

the variables f̃ and their conjugate momenta π̃. For the



23

leading order of quasiclassical expansion we replace the
operators π̄ = −iδ/δf̄(x) in eq. (178) by c-numbers

π̄ =
δS

δf̄(x)
. (179)

This gives the Hamilton-Jacobi equations for S(f̄):

H̄α(f̄ , π̄) ≡ H̄α
(
f̄ ,
δS

δf̄

)
= 0 . (180)

Gerlach [42] showed with amazing care how for gen-
eral relativity without matter the Hamilton-Jacobi equa-
tions (180) lead to classical trajectories in the configura-
tion space. The fields evolve along these trajectories by
the classical equations of motion for the Hamiltonian

H̄ =

∫
d3xNαH̄α(f̄ , π̄) . (181)

Later Kim [43] stressed that for consistent quasiclassical
description of inflating universe the “background” Hamil-
tonian components H̄α must include not only the long-
wavelength metric degrees of freedom γ̄ij but also, at
least, the long-wavelength part of the field φ that drives
inflation. Omission of the inflaton field from H̄α would
lead to non-oscillating solution [43] for the background

wave function ψ̄(f̄) ∝ eiS(f̄). Then the quasiclassical re-
quirement of slow variation in f̄ of δS/δf̄ and the pref-
actor in a solution eq. (176) could not be fulfilled [43].

It is straightforward to generalize Gerlach’s argu-
ments [42] to f̄ and H̄α that include both the metric and
matter fields. The observed classical trajectory of the
system (178) is the set of the fields f̄cl that are points
of constructive interference of solutions of the quantum
constraint equations (178). Consider the solutions of
eqs. (178) that are waves of the form

ψπ̄(f̄0 + df̄) ∝ eiπ̄·df̄ , (182)

where

π̄ · df̄ ≡
∫
d3x

∑
α

π̄α(x) df̄α(x) . (183)

These waves with wavenumbers π̄ in a narrow range
(π̄cl − δπ̄, π̄cl + δπ̄), centered at some π̄cl, interfere con-
structively [42] along an interval df̄cl of a trajectory in
the configuration space when

δπ̄ · df̄cl = 0 . (184)

This condition is illustrated by Fig. 3.
In the quasiclassical limit, the phase π̄ · df̄ of every so-

lution (182) obeys the Hamilton-Jacobi equations (180).
Following Ref. [42], we use the Lagrange multiplies for
finding the extremum (184) under the constraints (180)
for every α and x. Thus we require for all infinitesimal δπ̄
the following variation to vanish:

δπ̄ · df̄cl −
∫
d3x dtNαδH̄α(f̄cl, π̄) =

= dt

∫
d3x δπ̄

[
˙̄fcl −Nα ∂H̄α(f̄cl, π̄cl)

∂π̄cl

]
= 0 . (185)

FIG. 3: An interval [f̄cl, f̄cl + df̄cl] of a classical trajectory
that appears from constructive interference of waves ψπ̄ ∝
eiπ̄·df̄ with various momenta π̄1, π̄2, . . . in a range π̄cl ± δπ̄.
The thin lines represent the constant-phase surfaces of the
waves, e.g., their crests. The waves add up along the classical
trajectory, depicted by the thick arrow.

Here dtNα(x) are the Lagrange multiplies, ˙̄fcl ≡ df̄cl/dt,
and for a given df̄cl the value of dt is determined by
our choice of Nα(x). Condition (185) yields half of the
Hamilton equations of classical motion:

˙̄fcl(x) =
δH̄(f̄cl, π̄cl, N

α)

δπ̄cl(x)
, (186)

with H̄ of eq. (181). The other half of the classical Hamil-
ton equations,

˙̄πcl(x) = − δH̄(f̄cl, π̄cl, N
α)

δf̄cl(x)
(187)

then also follows as shown in Ref. [42]. The classical
equations of motion (186–187) should be complemented
by the constraints (180):

δH̄(f̄cl, π̄cl, N
α)

δNα(x)
= H̄α(f̄cl, π̄cl) = 0 . (188)

The lapse and shift functions Nα(x) can be chosen ar-
bitrarily. Their choice, however, affects f̄cl(x) and π̄cl(x)
that result from the evolution by eqs. (186–187). The
configurations f̄cl(t,x) for any Nα(x) are points of con-
structive interference of the waves (182). The set of all
such configurations can be parameterized by the Tomon-
aga “many-fingered time” σ(x) [44] as {f̄cl(σ(x),x)} [42].
This set may be interpreted physically as the configura-
tions of the classically evolving fields on all the various
spatial slices (t = σ(x),x) of the physical spacetime.

B. Hamiltonian description of quantum
components

We return to the full quantum system ψ(f), satisfying

the constraints Ĥαψ(f) = 0. In Appendix C we utilize
the approach of Lapchinsky and Rubakov [41] to obtain
a Schrodinger-like evolution equation for the small-scale
“quantum” degrees of freedom f̃ :

i∂tψ̃ = H̃ψ̃ (189)
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with H̃ = (
∫
d3xNαHα)− H̄. However, Appendix C

also shows that while eq. (189) looks like a time-
dependent Schrodinger equation for a wave func-
tion ψ̃(f̃ , t), it is rather a formal result that is not a stable
Schrodinger equation yet. To be used as such, it requires
removing spurious negative kinetic energy terms and re-
solving some other issues, described in Appendix C. This
substantially complicates the formalism that is based
on the direct quasiclassical expansion of the Wheeler-
DeWitt equation.

C. Lagrangian description of quantum components

For applications and derivation of a stable Schrodinger
equation of quantum field theory it is more convenient to
use the Lagrangian formulation of quantum-gravitational
dynamics on quasiclassical background (e.g., [45–47]).
We already encountered the Lagrangian formulation of
quantum dynamics through the Feynman path integral
in the earlier sections. In particular, in Sec. VI we used
the action (161) to find Hamiltonians for the systems
with gauge and diffeomorphism symmetries.

Classical trajectories f̄cl (186–187) of the “macro-
scopic” variables f̄ extremize the action

∫
dt L̄ of the

“background” degrees of freedom:(
∂t

δL̄

δ ˙̄f(x)
− δL̄

δf̄(x)

)∣∣∣∣∣
f̄cl

= 0 . (190)

Here L̄ ≡ L( ˙̄f, f̄ , Nα) is related to H̄ of the previous sub-
section by the Legendre transformation. The classical
background solutions also obey the primary constraints

δ

δNα(x)
L̄( ˙̄fcl, f̄cl, N

α) = 0 . (191)

(They correspond to the constraints π̄Nα ψ̄ = 0 of the
Hamiltonian formulation.) By eq. (6), Nα are in one-to-
one relation with the four components g0µ of the inverse
metric tensor. Hence for the Lagrangian of general rela-
tivity with matter the constraints (191) give four of the
ten independent components of the Einstein equations
for the background fields f̄cl = (φ̄, γ̄ij , . . . )cl:

Ḡ0µ − T̄0µ = 0 , (192)

where Gµν ≡ Rµν − 1
2 gµνR and Rµν is the Riemann ten-

sor.
We now return to the full system, including the short-

scale quantum degrees of freedom f̃ . We start from a
local Lagrangian

L =

∫
d3x L(ḟ(x), f(x), Nα) (193)

that yields a generally covariant action S =
∫
dtL. Let

us in the path integral use only the field configurations

that obey the primary constraints

δ

δNα(x)
L(ḟ , f,Nα) = 0 . (194)

If we set f̄ to the classical trajectories f̄cl then, by
eqs. (191) and (194), we have for

L̃(ḟ , f,Nα) ≡ L− L̄ (195)

a similar constraint:

δ

δNα(x)
L̃(ḟ , f,Nα)|f=f̄cl+f̃

= 0 . (196)

Consider a derived Lagrangian

L̃(
˙̃
f, f̃ , t) ≡ L̃(ḟ , f,Nα(t))

∣∣∣
f=f̄cl(t)+f̃

, (197)

where f̄cl(t) is regarded as an external function rather
than a dynamical degree of freedom and where the dy-
namical fields f̃ are constrained by eq. (196). This La-
grangian by itself specifies viable evolution in the space
of fitting functions (54) for the generic basic structure.

As discussed in the earlier Sec. VI B, we wish to match
the coordinates of the fitting functions (54) to the 3-
diffeomorphism orbits of the physical fields. To this end
we take a 4-diffeomorphism invariant action S =

∫
dtL

and construct with eqs. (195–197) the Lagrangian L̃ for

the evolution of ψ̃(f̃ , t). The background field f̄cl(x) in
these equations is any function that obeys the classical
equations (190–191) for the same action S.

A change of spatial coordinates corresponds to a joint
3-diffeomorphism transformation of both f̃ and f̄cl with a
common displacement εµ(x). Since the diffeomorphism
transformation (145) is linear and homogeneous in the

transformed field, the joint transformation of f̃ and f̄cl

is also a diffeomorphism transformation of the full field
f = f̄cl + f̃ . After such a transformation the new La-
grangian L̃′ for quantum evolution is given by the same
construction (195–197) but with the transformed back-

ground f̄ ′cl. In general, L̃′ and L̃ will be different func-
tions.

We now map the basic coordinates of the smooth fit-
ting functions (54) to the 3-diffeomorphism orbits of the

joint transformation of f̃ and f̄cl. For various choices of
spatial coordinates we encounter generally different but
equivalent Lagrangians L̃ and wave functions ψ̃(f̃ , t) for

the quantum degrees of freedom f̃ . The wave functions in
the various coordinate frames are all represented by the
same underlying basic structure. These representations
are equivalent but their form varies with the coordinate
frame.

Gauge transformations of gauge connection fields A,
eq. (120c) or (A15), are not homogeneous in the trans-
formed field. For this reason their separation into clas-
sical and quantum parts is less straightforward. We can
avoid the related complications by simply delegating all
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the modes of the gauge fields to the quantum degrees of
freedom. Of course, this does not prevent some modes
of A from becoming de facto classical by constructive
interference of quasiclassical waves, Sec. VII A. Charged
matter fields φα transform homogeneously under gauge
transformations, eqs. (120a–120b) or (A5). We there-
fore can straightforwardly decompose them into classi-
cal and quantum parts, φα = φ̄αcl + φ̃α, and construct a

quantum physical system with the Lagrangian L̃ as de-
scribed above.11

Consider a diffeomorphism-invariant wave func-
tion ψ(f̄ , f̃) that solves the Wheeler-DeWitt equa-
tion (174). Let the solution be quasiclassical in the vari-
ables f̄ in a band of spatial hypersurfaces around certain
time t. For example, we can think of the wave func-
tion that describes eternal inflation. This wave function
is typically a superposition of numerous decohered Ev-
erett’s branches with various classically evolving long-
wavelength modes, f̄cl(t). The evolution of ψ̃(f̃ , t | f̄cl)
from eq. (176) in any individual Everett’s branch is the
same whether we match the modes f̄ to the coordinates
of the underlying basic structure or treat them as exter-
nal classical fields f̄cl. Thus the observed local world can
be represented not only by the above ψ(f̄ , f̃) but also

by a pair (f̄cl, ψ̃), where f̄cl(x) evolves by the classical
Euler-Lagrange equations (190) for the Lagrangian L̄ and

ψ̃(f̃(x), t) evolves by the path-integral transformation

with the Lagrangian L̃ (195–197), obtained from the orig-
inal diffeomorphism-invariant local action S =

∫
dtL.

Likewise, the same physical world is simultaneously
represented by different pairs (f̄cl, ψ̃) that are indistin-
guishable to a local observer. Indeed, the typical physi-
cal observer is described by a decohered Everett’s branch
with a definite f̄cl(t). This observer cannot distinguish
representation of some of the field modes f̄k by c-number
function f̄cl(t) from representation of the same modes by

quantum variables f̃ that evolve quasiclassically. The
physical world is composed of all these representations,
given by different fitting functions for ν(q), that satisfy

〈i|i〉 � δχ2
min (198)

for their objective existence [cf. text around eq. (51)].
Thus the observed world is the ensemble of patterns
within the generic basic structure ν(q) that provide ob-

11 Evolution of the classical component f̄cl, by its construction
in eqs. (190–191), is not influenced by the quantum degrees of
freedom. Therefore, during evolution f̄cl may significantly di-
verge from the associated physical classical objects, represented
by both f̄cl and the quasiclassical modes of f̃ . In particular, the
described formalism, where the gauge fields are fully quantum
and do not affect the classical charges, would be inconvenient
for studying the motion of charged classical objects. On the
other hand, this formalism is useful when classical evolution is
predominantly controlled by gravitational interaction, such as
during cosmological inflation or black hole evaporation.

servationally indistinguishable representations of a phys-
ical state.

The four constraints (196) allow us to express four of
the six components of γ̃ij , including the scale factor ã,
as functions of the remaining dynamical fields and the
arbitrary lapse and shift Nα(x). As a result, in the La-
grangian formulation we do not encounter the spurious
“negative kinetic energy” term δ2/δã2, which compli-
cated the Hamiltonian formulation as reviewed in Ap-
pendix C. In the Lagrangian approach the only dynam-
ical components of γ̃ij are manifestly the two physical
polarizations of gravitons with positive kinetic energy.

The described Lagrangian formulation with constraints
was applied to calculate the joint evolution of background
classical and small-scale quantum fields during inflation
in Refs. [45, 46], working in the linear order in f̃ . Ref. [47]
extended the approach of [45] to higher, non-linear or-
ders. In the companion paper [33] we employ the pre-
sented formulation to analyze black hole evaporation.

D. Gravitationally collapsing regions

During quasiclassical general-relativistic evolution
some regions of the universe gravitationally collapse. The
collapse is unstoppable under conditions [48, 49] that are
commonly expected in the central parts of massive stars,
galactic cores and other cosmological overdense regions.
Physical laws should fully describe if not necessarily the
full interior of such regions then, at least, interaction of
their boundary with the remaining universe throughout
its entire evolution. This applies to both the classical
and quantum components of the pairs (f̄cl, ψ̃).

In further Sec. VIII we argue that emergent sys-
tems that represent viable physical worlds should inher-
ently possess dynamical local symmetries. In companion
Ref. [33] we also see that a diffeomorphism-symmetric
action of general relativity is sufficient for describing the
classical-quantum evolution (f̄cl, ψ̃) outside a black hole
throughout its entire evolution and ultimate complete
evaporation. Specifically, the pair (f̄cl, ψ̃) can evolve by
a generally covariant quantum field theory both outside
and inside the black hole event horizon until the geo-
metrical curvature invariants (R, RµνλχR

µνλχ, etc.) ap-
proach the Planck scale (m2

P , m4
P , etc., matching the

dimension of the invariant). While the black hole evap-
orates by emitting the Hawking radiation [50], its event
horizon shrinks. The curvature invariants outside the
horizon remain sub-Planckian until the final stage of the
evaporation, when the black hole mass diminishes to the
order of mP . And even then and afterwards there is dy-
namically unambiguous and physically acceptable con-
tinuation of the evolution of (f̄cl, ψ̃) at the distances
r & m−1

P away from the vanishing black hole. Accord-
ing to Secs. II and VIII of this paper, as long as such an
unambiguous path of evolution exists, it is objectively
realized in nature.

Although here and in Ref. [33] we consider only bosonic
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fields, we expect that fermions do not affect our conclu-
sions for the following reasons. The geometry of space-
time at sub-Planckian curvature may be consistently de-
scribed by the quasiclassical metric. Of course, our world
might be more intricate and non-metric gravitational
degrees of freedom might also become relevant at sub-
Planckian energy. But if it is not the case, i.e., if general
relativity is suitable to all energies well below mP then
fermions contribute [51] to the Hawking radiation simi-
larly to bosons. Any non-metric gravitational, e.g. super-
gravitational, degrees of freedom are then excited only at
the very final stage of black hole evaporation. Except for
the added possibility of a black hole remnant with a mass
of the order of mP , this does not influence the results of
either this paper or the companion Ref. [33].

We thus proceed under the plausible assumption that
unknown physics does not invalidate the field-theoretical
and general-relativistic descriptions of our world at any
energy density well below the Planck scale. As we will see
soon, then mapping the physical quantum fields to the
underlying basic structure becomes particularly simple
around the Planck energy.

E. Emergence of inflating worlds

Our goal is to identify in the generic basic struc-
ture ν(q) of Secs. III and IV C a class of physically-

equivalent pairs (f̄cl, ψ̃) that can represent the observed
world. Abundant empirical evidence suggests that the
visible universe has evolved from inflationary past. In-
deed, not only has the inflationary paradigm naturally
justified [23] the observed spatially-flat, nearly homoge-
neous, low-entropy cosmological initial conditions. But
inflation has also been tremendously successful in hav-
ing predicted a variety of properties of the cosmological
structure that were unknown at the time. This includes
“adiabaticity” of the primordial cosmological perturba-
tions, their approximate Gaussianity, and the small and
almost scale-independent tilt of their power spectral in-
dex ns − 1 [52–54].

Accordingly, we look for pairs (f̄cl, ψ̃) that corre-
spond to inflationary or post-inflationary configurations
of physical fields. Let in these pairs f̄cl(t,x) describe a
classical background that is smooth on the length scales
comparable to or smaller than the Hubble radius. Let
ψ̃[f̃(x), t] be the wave function of the inhomogeneities on
these, horizon or subhorizon, scales. As we see next, in
inflating background metric the quantum fields f̃(x) in-
deed map naturally to the coordinates of the generic basic
structure. A suggestive hint for this is that both the fit-
ting function for the generic distribution of Sec. IV C and
the primordial distribution of the inhomogeneity modes,
as far as the current cosmological observations show, have
the same Gaussian form. We nonetheless should exercise
care in linking the two distributions. In particular, the
generated by inflation initial conditions for even negli-
gible non-gravitational interaction of the fields are ex-

pected to be Gaussian only approximately [47].

It might be tempting to identify the initial wave func-
tion of the modes with ψ0(q) of eq. (82) that emerges in
the generic basic structure ν(q). Such an identification
would naturally answer two important questions that
have not been explained in the earlier literature. The
first of them is even referred by some authors as suggest-
ing problems [25, 26] with the inflationary paradigm.

The first question is why all the field modes evolve from
highly special low-entropy initial conditions, necessary
for inflation. Any light field whose quantized modes are
characterized by an occupation number n(k) increases
energy density, ε, of radiation by

∆εrad =

∫
d̄3k k n(k) ∼ n̄m4

P . (199)

Here n̄ is the average energy-weighted occupation num-
ber of the modes. Since for the radiation pressure
prad = εrad/3, the condition for the total pressure dur-
ing inflation p 6 −ε/3 [55] holds only if n̄� 1, i.e., only
if the high-frequency modes emerge from the Planck scale
essentially in the vacuum state.

The second question is why inflation, which generically
continues forever [24], does not “run out” of the degrees
of freedom while the space and dynamical fields in it
expand to arbitrarily large extent.

Regarding the first question, Sec. IV C demonstrated
that if the wave function fundamentally is the fitting
function of the generic structure then in certain basic
coordinates q it will indeed be of the specific Gaussian
form. This agrees with the inflationary requirement that
the initial state of high-energy modes is highly specific.
We, nevertheless, remember that in the presence of in-
teraction, even gravitational one, this specific ground
state usually does not have strictly Gaussian wave func-
tion [47]. This discrepancy can be substantial when
the interaction becomes significant, as expected even for
gravity around the Planck scale. We will resolve this
issue by the end of this subsection.

The second question—the origin of the new micro-
scopic degrees of freedom during perpetual inflation—is
naturally answered as follows. In the described construc-
tion the wave function of the new modes, emerging dur-
ing inflation from ultra-small scales, stems from fitting
the basic structure by a function of basic variables qn.
The physical universe is then the ensemble of all the dif-
ferent choices for qn, properly normalized but arbitrarily
directed. For a finite number of independent basic coor-
dinates the new modes in eternal inflation will eventu-
ally be represented by coordinates qn that are already
involved in representing other modes on larger scales,
including superhorizon scales. Thus inflation can still
continue eternally even for a finite number of the basic
objects and their properties. In its course, however, the
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basic-level information12 then have to be recycled from
superhorizon to the newly emerging microscopic scales.

To find fitting functions (54) that are suitable candi-
dates for the observed world, we need to resolve several,
ultimately interrelated, issues. First, as already noted,
if we attempted to associate the initial conditions of
the field modes in an inflating universe with the generic
Gaussian wave function ψ0(q), eq. (82), then for a re-
alistic interacting theory we would generally find that
this ψ0 is not the ground state of the Hamiltonian. Sec-
ond, energy of the modes (with respect to comoving co-
ordinates) redshifts during the cosmological expansion.
Then the wave function of the modes changes its shape.
In an interacting theory the form of the wave function
changes even on deeply subhorizon scales. Hence we
should ask at which energy, if any, the modes’ wave func-
tion matches ψ0(q). Third, in patches where inflation has
ended, overdense regions can and in our universe do grav-
itationally collapse. In the collapsing regions the wave
function of progressively more energetic modes departs
from the vacuum. Then how can we identically set the
modes’ wave function at some energy to a fixed function?

As already stated, we suppose that the physical world,
including the exterior of collapsing regions, can be de-
scribed at any energy density below the Planck scale,
ε� m4

P , by a field theory. In this section we will refer
to the energy density ε in the rest frame, where the total
momentum density is zero. More rigorously, we could
quantify the field configurations by the curvature invari-
ants as outlined in Sec. VII D.

Ref. [33] shows in detail that the classical-quantum
evolution by the general-relativistic action (161) contin-
ues unambiguously outside the (stretched) horizon of a
black hole with massM & mP through its complete evap-
oration. On the other hand, in general relativity field ex-
citations with ε ∼ m4

P over the ground state inevitably
collapse to black holes. At the Planckian energy density
they cannot evolve further by the considered field theory.
Thus the physical wave function of the short-scale modes
whose even lowest excitations give ε ∼ m4

P should always
describe the only possible physical state of these modes—
the ground state. This unique physical wave function can
then be matched to the generic basic fitting function (80)
with a fixed rule, considered below. The referred modes
with a unique (for a given Hamiltonian) wave function
have frequency of the order of mP .

A mode frequency ω that starts at ω ∼ mP redshifts
during cosmological expansion to sub-Planckian values.
For the nearly adiabatic evolution of the high-frequency
modes that are well inside the Hubble horizon, their oc-
cupation number remains approximately constant. We
map new coordinates qn to the amplitudes of the new

12 “Recycling” refers to the basic information in the discrete distri-
bution rather than the quantum information [1] in the physical
wave function. The smooth ground-state wave function of the
emergent modes carries no information about the larger scales.

physical modes so that the modes emerge at the Planck
frequency in the ground state. Then the strict necessary
condition for inflation n̄� 1, where n̄ is the average occu-
pation number (199), is satisfied automatically. Opposite
to cosmological expansion, the contraction of overdense
regions then also proceeds by well defined, continuous,
and as argued in Sec. VIII unique dynamics. The re-
sulting quantum evolution during gravitational collapse
and complete evaporation of the formed black holes is
described in the companion paper [33].

The ground state of the modes with frequency near the
Planck scale may not in a given interacting theory have
the Gaussian wave function ψ0(q). Nevertheless, we are
free to assign the initial wave function of the modes that
emerge at ω ∼ mP to any of the equivalent representa-
tions (54), e.g., to

ψ′0(q) = Û0 ψ0(q) , (200)

where Û0 is an arbitrary non-degenerate operator. In
a consistent emergent theory, the operator Û0 yields ψ′0
that is the ground state of the Planck-frequency modes
for the theory Hamiltonian. We can maintain the canon-
ical form of the Hermitian product (79) by choosing a

unitary operator Û0 that yields the desired ψ′0. Another
option to arrive at the necessary initial ψ′0 is to apply
a non-degenerate transformation to ρ of eq. (39) and
then again to construct the corresponding canonical wave
function with eq. (53).

Suppose that there is no antropically acceptable
Hamiltonian with the ground state of the Planck-
frequency modes in the Gaussian form ψ0. If, in addition,
there exists a unique antropically suitable Hamiltonian
with a ground state ψ′0 of the form (200) then, trivially,
it becomes the unchallenged candidate for representing
our physical world. But if there exist antropically accept-
able Hamiltonians of both types then the one associated
with ψ′0 would not as likely represent our world as would
the Hamiltonian with the ground state ψ0. We postpone
this topic until a future paper.

Rather than arriving at the ground state ψ′0 (200) by
transforming the generic Gaussian ψ0, we could pick a
special, non-typical subset of the basic fundamental ob-
jects that would directly yield the desired ψ′0(q). We
pointed this out in footnote 9 of Sec. V. Yet while this is
true, there appears no justification to limit the physical
world to such exclusive subsets. Indeed, in parallel there
exist many more other generic sets of the objects that
contain the same emergent physical world through the
representation (200).

F. Local mixed states

Finally, and importantly for the resolution [33] of the
black hole paradoxes [29, 31], we observe that the emer-
gent quantum-field world is necessarily described by a
density matrix, rather than by a pure wave function. In-
deed, the emergent physical world is the ensemble of all
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the field states that match our current local environment.
The degrees of freedom beyond today’s Hubble horizon
should be traced over, yielding the locally-relevant den-
sity matrix. Trace should also be taken over the degrees
of freedom under the event horizons of the black holes in
the visible universe.

We saw in Sec. III that a wave function ψ[f(x)] that
emerges from a fitting function for a basic distribu-
tion ν(q) exists not merely as a mathematical abstraction
but as an objective entity if and only if condition (198)
holds. For a pure wave function the criterion (198)
strongly depends on how we extend the equal-time spatial
hypersurfaces to superhorizon scales. Yet this criterion
is unambiguous for the density matrix of a subhorizon
region and observers in it who can maintain causal con-
nection with each other. We describe this quantitatively
in further Sec. IX, where we quantify the objective prob-
ability of various macroscopic outcomes of a quantum
process.

VIII. WHY A SPECIFIC HAMILTONIAN?

We now address the important question of why the
particle and other experiments, observations in astro-
physics and cosmology, as well as our daily experience
consistently show that the physical evolution is governed
by a specific Hamiltonian whose couplings do not vary
with spacetime location and with the type of an ex-
periment that measures them. We observed in Sec. II
that the standard quantum mechanics permits evolution
ψ → ψ′ = Ûψ of any quantum state ψ by an operator
Û = exp(−iĤ ′∆t) with an arbitrary Ĥ ′. It followed that
ψ′ “exists” as much as the original wave function ψ does.
The Heisenberg time-dependent operators that evolve
by Ĥ ′ likewise exist. Then, if evolution by the arbi-
trary Ĥ ′ takes place objectively, why do we live through
a highly specific version of evolution, with the symme-
tries and the numerical parameters of the Hamiltonian
being constant?

To answer this question, let us remember that in a
gauge- and diffeomorphism-invariant theory the argu-
ments of the wave function are the whole symmetry-
group orbits [32] rather than individual field configura-
tions. Hence in the corresponding emergent theory we
match the points with specific values of the coordinates q
of the underlying structure to the entire symmetry or-
bits of the particle fields. A Hamiltonian that does not
preserve the constancy of the wave function on these or-
bits cannot unambiguously continue the wave function
to a new time. It may then be impossible to modify
the Hamiltonian of the considered emergent system in-
finitesimally while preserving the system independent de-
grees of freedom, specifically their number. Let us call a
quantum system isolated if it is impossible to change its
Hamiltonian infinitesimally within the dimensionality of
the system configuration space.

We may, of course, consider other matches where dif-

ferent field configurations (e.g., f1 6= f2) that can be
transformed into each other by a gauge transformation
map to different values (e.g., q1 6= q2) of the coordinates q
of the underlying basic structure. Then we can evolve the
resulting wave function ψ(f) with Hamiltonians that vio-
late the symmetry. However, the resulting new quantum
system has no specific direction for its dynamical evo-
lution. On its typical evolution path the physical laws
change inherently unpredictably. Its internal subsystems
cannot evolve biologically because their past experience
does not help them to cope with future challenges. Thus
this emergent system, different from the previous sym-
metric system because of its different degrees of freedom
and different dimensionality of the configuration space,
does not represent an antropically acceptable physical
world.

The arguments above do not apply directly to symme-
tries that mix fields on separate spatial slices of different
time t. In particular, we cannot require the wave function
to be unchanged under the 4-diffeomorphism symmetry
transformations (145–147) with ε0 6= 0. This symmetry
is, nevertheless, physically essential. It specifies the evo-
lution through the Wheeler-DeWitt equation (174) and
it leads to the observed local Lorentz symmetry. The lat-
ter ensures that a localized excitation over the vacuum in
one spacetime coordinate frame appears in another frame
as a similarly localized excitation with equivalent macro-
scopic content. In both frames the excitation evolves by
the same laws. Without the Lorentz symmetry of the dy-
namical laws and of the vacuum state, a localized system,
including an intelligent observer, would generally loose its
identity as soon as it starts moving relative to some global
frame. This would highly complicate macroscopic causal
relations in interdependent evolution of macroscopic ob-
jects, including the development of intelligent observers.

We may discuss at least two alternatives for preserving
the local Lorentz symmetry. One is that the directions of
evolution that break this symmetry are excluded by an-
thropic considerations because of the reasons described
in the previous paragraph. In this case, alternative evo-
lutionary branches spring off at every moment but no
observer in these branches survives for a noticeable du-
ration of time.

Another, more appealing, possibility is protection of
the 4-diffeomorphism symmetry by a deeper symmetry.
Consider a new symmetry such that any infinitesimal
4-diffeomorphism transformation can be presented as a
sequence of the new symmetry transformations that in-
volve only fields on the current spatial hypersurface. The
emergent physical systems with this symmetry necessar-
ily evolve by a unique Hamiltonian.

An example is the local supersymmetry. The genera-
tors of supersymmetry, QAα , fully determine the Hamil-
tonian through the anticommutation relation

{QAα , QBβ †} = 2δABσµαβPµ . (201)

Here A,B = 1, . . . , NSUSY; σµ = (−1, σi), where σi are
the Pauli matrices; and Pµ is the 4-momentum operator.
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Trace of eq. (201) yields the Hamiltonian

H ≡ P 0 =
1

4NSUSY

∑
A,α

{QAα , QAα †} . (202)

Fermionic fields and quantum states with local super-
symmetry exist naturally and compactly in representa-
tions of the same generic distribution of properties of
any objects with real continuous fitting functions of the
considered form (54). The description of this result is
deferred to a forthcoming paper.

We can locally super-transform the fields or states
of an emergent system along any fermionic parameter
field ξα(x). Since ξα is not a dynamical field but an
arbitrary transformation parameter, a locally supersym-
metric wave function cannot depend on it. Similarly
to the gauge symmetry (Secs. V B and V C) or dif-
feomorphism symmetry (Sec. VI C), the requirement of
wave function independence from ξα after an infinitesi-
mal step of evolution leads to the usual secondary con-
straint: local supersymmetric transformation, generated
by
∫
d3x [ξαj0

α + (its conjugate)], should not change the
wave function. [Cf. eq. (133) for gauge symmetry or
eqs. (157–158) for diffeomorphism symmetry.] Hence the
global supersymmetry generator Qα =

∫
d3x j0

α and its
conjugate should also annihilate a wave function of a lo-
cally supersymmetric system:13

Qψ = Q†ψ = 0 . (203)

These conditions entail by eq. (202) the Hamiltonian con-
straint Hψ = 0, providing unambiguous dynamical evo-
lution of the given system.

Thus, unlike our earlier situation for diffeomorphism
symmetry (Sec. VI C), the Hamiltonian constraint is no
longer an independent requirement for evolution of the
wave function. Rather it is a property of the emergent
wave function at any fixed time. We can understand
this intuitively by interpreting eq. (202) as suggested in
Sec. 6 of Ref. [56]. Namely, each of the infinitesimal
supersymmetry transformations by Q or Q† constitutes
“half-step” of a temporal displacement by the Hamilto-
nian H. Therefore, constancy of the wave function at the
half-step ensures its constancy at the full step of temporal
displacement.

Of course, there exist various supersymmetric theories
with different Hamiltonians. However, for each of them
the Hamiltonian of the corresponding emergent system is

13 For preventing possible confusion, let us note that eq. (203)
does not imply vanishing the supersymmetric charge of every
particle. Analogously, the similar constraint of a gauge theory
does not imply the absence of charged particles. Likewise, the
Hamiltonian and momentum constraints Pµψ = 0 of canonical
quantum gravity do not require the energy and momentum of
every particle to be zero. These equations only state that the
simultaneous transformation of the matter, gauge, and metric
fields does not change the overall wave function.

uniquely encoded in the map of the generic basic struc-
ture to the supersymmetry orbits of a given theory. We
therefore may expect coexistence of different emergent
systems. Yet every of those systems evolves by its own
Hamiltonian, unchanged for the states of that system
during their evolution.

Similar reasoning applies to the observed constancy of
the physical couplings in spacetime [22]. The gauge and
diffeomorphism symmetries are compatible with space-
time variation of the couplings provided that under the
diffeomorphism transformations the couplings change as
scalar fields. Yet the experiments indicate that the cou-
pling are constant. The discussion above suggests, like-
wise, two different possible explanations.

One is that the observed couplings are tuned to the
special values such that even their slight deviation quickly
destroys the macroscopic structure of our world. It
is insufficient that anthropically acceptable environment
would not arise through physical evolution at different
values of the couplings, e.g., due to the absence of the
resonant triple-α process in the stellar nucleosynthesis,
or non-occurrence of similar fortunate events in our past.
Even a recent detectable spacetime variation of the cou-
plings should make the world uninhabitable so quickly
that we have no time to realize our living through these
dead-end directions of physical evolution.

Another, more robust, option is again the protection
of the constancy of couplings by a symmetry that con-
nects their values at separate spacetime points by a se-
quence of equal-time symmetry transformations. An ex-
ample of such a symmetry is again the supersymmetry,
of course, broken dynamically at the currently accessible
energy scales.

IX. PROBABILITY AND THE BORN RULE

A. Conditions for the Born rule

Let a wave function ψ split during its physical evolu-
tion into a sum of orthogonal terms:

ψ =
∑
i

ψi , (204)

〈ψi|ψj〉 = δijwi . (205)

The Everett branches ψi after the split for a physical
system with a large number of coupled environmental
degrees of freedom rapidly decohere.

In Sec. III we considered wave functions ψ(Q, t) that
fundamentally are the coefficients in linear combinations
of smooth basis function (54) that fitted a generic finite
structure. Then we found in the same Sec. III that an
Everett’s branch ψi exists as an objective entity if and
only if its weight wi ≡ 〈ψi|ψi〉 exceeds a certain positive
threshold δχ2

min.
Suppose that in the accessible to us patch of the uni-

verse someone performs a multiple-outcome quantum
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experiment, e.g., the Stern-Gerlach, or double-slit, or
Schrodinger cat experiment. The experimental object,
apparatus, local environment, experimentalist, and other
people in the local universe are all described quantum-
mechanically by a density matrix. This density matrix

ρ(Qloc, Q
′
loc) =

∫
dQext ψ(Qloc, Qext)ψ

∗(Q′loc, Qext)

results from integrating out the inaccessible degrees of
freedom Qext, e.g., those beyond the event horizon of the
present accelerated cosmological expansion or the hori-
zons of black holes. In addition, we delegate to Qext the
environmental degrees of freedom that do not affect the
experimental object and the macroscopic identity of the
experimentalist and the other communicating observers
in the local universe.

Given an underlying basic structure, we consider
the set of all the emergent quantum configurations
{ρr(Qloc, Q

′
loc)} that represent the beginning of the ex-

periment and are macroscopically similar to each other in
the observationally accessible patch of the universe. We
call an individual mixed state r of this set a realization of
the emergent physical world. After the experiment with
several decoherent outcomes i, the density-matrix ρr of
every realization r splits into a sum of density matrices
for the Everett branches i:

ρr =
∑
i

ρir . (206)

In this equation the omitted cross terms
∫
dQext ψi ψ

∗
j

with i 6= j vanish because the macroscopically distinct
outcomes decohere. Then for the weights

wr =

∫
dQloc ρr(Qloc, Qloc) ≡ Tr ρr , (207)

wir = Tr ρir (208)

we have

wr =
∑
i

wir . (209)

We consider experimental conditions that at the be-
ginning of the experiment unambiguously specify the rel-
ative wave function of the probed microscopic subsys-
tem. Since the discussed realizations r are macroscopi-
cally similar in the local patch of the universe, they have
the same relative wave function of the probed subsystem.
Therefore, the ratios

αi = wir/wr (210)

are the same for every considered realization r. By
eq. (209) ∑

i

αi = 1 . (211)

We introduce cumulative distribution of the weights for
the locally-similar physical realizations ρr that describe
the experiment beginning:

F (w) ≡

(
number of realizations ρr

with wr ≡ Tr ρr > w

)
. (212)

Let Fi(w) be the analogous cumulative distribution for
the realizations of an outcome i after decoherence of the
various outcomes of the experiment. For discrete non-
degenerate outcomes {i}, Fi(w) is related to the initial
distribution (212) as

Fi(w) = F (w/αi) . (213)

(Indeed, a realization of the outcome i with weight wir
is created by a realization of the initial state with
weight wir/αi.)

Similarly to branches ψi of a pure state ψ, a branch ρi
of a mixed state ρ exists objectively if and only
if wi ≡ Tr ρi exceeds the threshold wmin = δχ2

min of
eq. (51), Sec. III. A local mixed configuration ρ splits
into separate branches with smaller weights only through
evolution of the degrees of freedom Qloc, contributing
to the macroscopic identity of the local physical system.
Branching of a pure wave function ψ due to evolution
of Qext, in particular, of the degrees of freedom beyond
various event horizons, does not additionally split the
local density matrix. This can be understood by view-
ing Qloc and Qext as coordinates along independent di-
mensions of the basic distribution ν(q), depicted by Fig. 2
in Sec. IV C. In essence, we consider the same smooth
functions of eq. (54) to fit simultaneously all the con-
tributing to ρi patterns regardless of their position in the
coordinates Qext. It can be an objectively existing en-
tity, with Tr ρi � δχ2

min, even if the wave functions that
could describe any of the individual patterns have too
low weight to exceed their objective existence threshold.

Also, as advertised in Sec. VII F, the trace over Qext

removes the ambiguity of extending beyond the local
Hubble volume the equal-time slice of spacetime that
defines the system configuration or state. While choos-
ing the equal-time hypersurface in the weakly perturbed
Robertson–Walker metric is unambiguous locally (on
sub-Hubble scales), on larger scales there are various
“reasonable” yet non-equivalent choices, yielding quali-
tatively different conclusions for probabilities of specific
physical configuration [57–60].

We return to the cumulative distributions F (w) and
Fi(w) for the state weights before and after the experi-
ment. The total number of the objectively existing state
realizations with an outcome i is

Ni = Fi(wmin) , (214)

as evident from the definition of cumulative distribu-
tion (212). The frequentist probability of the outcome i
is therefore

Pi =
Ni∑
iNi

=
Fi(wmin)∑
i Fi(wmin)

. (215)
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In particular, if an event or a chain of events becomes
so unlikely that the respective Ni falls below unity then
there are no physical outcomes of the type i. This
makes Pi of eq. (215) the objective physical probability
and distinguishes it from alternative formal assignments
of probability, even if the latter are “rational” in the sense
of Refs. [13–16].

For an experiment that splits quantum states into de-
coherent terms i of relative weights αi (210), the proba-
bility (215) by eq. (213) becomes

Pi =
F (wmin/αi)∑
i F (wmin/αi)

. (216)

For example, for a power-law cumulative distribution

F (w) =
A

wp
(217)

[with p > 0 so that dF/dw 6 0 by F (w) definition (212)]
we have

Pi =
αpi∑
i α

p
i

. (218)

Note that unless p = 1, the Born rule, requiring Pi = αi,
does not apply. Likewise, the Born rule does not hold for
any cumulative distribution F (w) that is not described
by a power law.

We now prove that the distribution F (w) indeed has
the power-law form with p = 1, hence the Born rule ap-
plies, under the following conditions. Consider an ensem-
ble of states {r} that are no longer required to be macro-
scopically similar. Let this ensemble be in equilibrium
such that its cumulative distribution does not change by
quantum splits in any subset of macroscopically similar
states. This means that for any split

F (w) =
∑
i

Fi(w) . (219)

Then by eq. (213)

F (w) =
∑
i

F (w/αi) . (220)

For an experiment with two outcomes, of relative weights
α1 ≡ α and α2 = 1− α, the above condition reads

F (w) = F
(w
α

)
+ F

(
w

1− α

)
. (221)

Since the last equation should hold identically in α, we
differentiate its both sides over α to obtain

1

α2
f
(w
α

)
=

1

(1− α)2
f

(
w

(1− α)2

)
(222)

where

f(w) ≡ −dF
dw

. (223)

The introduced function f(w) is the weight distribution
density for the considered ensemble of the emergent phys-
ical states. The identity (222) gives us f = A/w2, where
A = const. Integrating this result and fixing the integra-
tion constant by eq. (221), we determine the correspond-
ing cumulative distribution of weights:

F (w) =
A

w
. (224)

We noted after eq. (218) that cumulative distribution of
the form (224) is special: It and only it yields the Born
rule for the connection between the wave function and the
probability for an observer to find oneself in the branch
with a particular outcome.

There appears no obvious reason for the weight dis-
tribution to remain fixed over a time span during which
cosmological parameters of the local universe change sub-
stantially. On the other hand, for quantum processes
with shorter timescales the realizations of typical worlds
may be in approximate equilibrium. Systematic investi-
gation of the conditions that lead to the equilibrium (219)
is beyond the scope of this paper.

B. Important real-world consequences

As time passes by, the quantum states that constitute
our physical world incessantly split under numerous nat-
ural or human-driven processes. The natural processes
include radioactive decays, stellar nuclear fusion, high-
energy collisions of cosmic rays, etc. If a physical system
incorporates regions where inflation is ending then its
wave function undergoes an immense number of quantum
splits during the creation of particles at reheating. Inflat-
ing regions also contribute to splitting by continuously
foliating into branches with different classical values of
the field modes that freeze after they exit the horizon.

The arguments of the previous subsection show that
a non-zero minimal value of wi = Tr ρi is essential for
connecting the state norm with phenomenological prob-
ability. The positive lower limit on the squared norm wi
of a physically existing branch naturally follows from the
first principles as shown in Sec. III. On the other hand,
the positive cutoff for the norm has extremely disturbing
real-world implications. Any physical state that repre-
sents our world is bound to split into progressively “thin-
ner” branches each of which then eventually terminates.

Yet our world has already survived a tremendous
amount of splits due to natural processes, including those
listed above. We thus face two important questions:

1. What makes our world sustain natural splitting of
the wave function?

2. May some relatively recent or future human-
created processes cause splits that are more dan-
gerous than the natural ones?
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The preceding subsection IX A suggested an answer to
the first question. The termination of some of the ex-
isting branches may be balanced by the appearance of
new branches during the splits. Nonetheless, the sum of
the weights

∑
r wr has to diminish during the evolution

along a particular classical path, unless the ensemble of
the states {r} for this path replenishes from the appear-
ance of new physical degrees of freedom from the Planck
scale (Sec. VII E). No source of the replenishment is evi-
dent for our local universe in the current Hubble volume.
Still, a quasi-equilibrium ensemble of states that evolve
along a certain macroscopic path should not deplete ex-
ponentially fast for a typical evolution path, into which
many states decay.

The quantum splits due to recent, by cosmological
time-scales, human activity should be a minute fraction
of all the splits. Yet some of these artificial splits, e.g. due
to quantum computing, possibly never happened before.
Reassuringly, the cause of the quantum split does not af-
fect whether or not a given classical branch terminates
as long as every followed decoherent branch has a weight
of the order of that for its parent branch. Yet it is im-
portant whether or not our branch is sufficiently generic
to continue existence for additional cosmologically signif-
icant duration of time.

It is easy to devise practically realizable selection of
the branches that throws the observer to untypical, non-
generic branches. For example, the Schrodinger cat can
be arranged to survive only for an extremely unlikely but
in principle possible quantum fluctuation. If we accept
the Everett view of quantum evolution literally and be-
lieve that every outcome, with an arbitrarily small ampli-
tude of its branch, exists then from the cat’s point of view
the animal could be expected to be safe. It is clearly not
the case in the fundamental picture of physical evolution
that is developed by this paper.

X. CONCLUSION

We considered the generic distribution of quantifiable
properties of a large finite number of arbitrary static ob-
jects. We established that some low-resolution descrip-
tions of this distribution can be identified with wave func-
tions of emergent physical systems. These descriptions
form a sequence of continuously evolving wave functions
of elementary particle fields with local symmetries (e.g.,
gauge and diffeomorphism symmetries, resulting in gauge
and gravitational interactions of the emergent fields).

The suitable collections of basic objects with many
properties that can be quantified by real numbers are
commonly encountered in mathematics and in the em-
pirical world. Any such collection objectively contains
emergent dynamical quantum fields with local symme-
tries, i.e., with evolution by physical laws similar to those
of our observed world.

Independently from this, we showed that in any quan-
tum world, regardless of its fundamental origin, the

quantum superposition principle requires future branches
of physical evolution with arbitrarily modified Hamilto-
nian. For the separate branches remaining decoherent,
the alternative Hamiltonians should still possess pointer
states [4, 7], stable to decoherence. Still, in general, there
are many such different Hamiltonians, for example, those
whose couplings adiabatically change at a rate varying
arbitrarily throughout time and space. We therefore face
a question of why our daily experience and all the per-
formed experiments agree on the same Hamiltonian of
the Standard Model and general relativity with the con-
stant values of its parameters.

We suggest a resolution by recalling that in a theory
with a local symmetry the arguments of the wave func-
tion are the whole orbits of the symmetry group [32]. A
Hamiltonian that does not preserve the constancy of the
wave function on these orbits cannot continuously trans-
form the wave function while preserving the degrees of
freedom of the physical system. In locally supersymmet-
ric theories the requirement for a wave function to be con-
stant on the symmetry orbits specifies fully the Hamil-
tonian, i.e., the future evolution of the system. Thus
emergent systems with local supersymmetry possess un-
ambiguous dynamical laws. These laws may differ among
independently coexisting isolated emergent systems. But
for any such system its Hamiltonian is uniquely encoded
in the map of the generic basic structure to the orbits
of the local supersymmetry. This map defines the emer-
gent system. During its evolution its Hamiltonian cannot
change.

In the emergent physical system we manifestly see why
quantum entanglement persists over arbitrarily large,
even cosmological distances while the dynamics of the
physical fields is strictly local. Entangled dynamical vari-
ables that refer to two widely separated physical objects
are different coordinates of the generic basic distribution
(in some of its representations). An entangled state of
these dynamical variables is simply represented by a wave
function term that is localized in the both coordinates.
Dynamical variables that we perceive as separated by
tremendous distance are merely independent character-
istics of the same feature of the underlying basic distribu-
tion. The physical distance is meaningful only in relation
to the emergent local dynamics of the emergent quantum
fields. In this perspective, quantum entanglement at any
distance is trivial.

The reason for the locality of physical dynamics is less
obvious. The dynamics is necessarily local for the emer-
gent systems where some dynamical fields are parame-
ters that quantify local transformations of other physical
fields, emerging as described previously. This encom-
passes the physical modes of gauge connection fields—
gauge bosons (Sec. V) and of the metric field—gravitons
(Sec. VI).

The considered emergent quantum fields thus possess
the standard gauge and gravitational interactions. The
companion Ref. [33] demonstrates that even when the
emergent dynamical laws have no continuation beyond
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boundaries at which energy density or spacetime curva-
ture approach the Planck scale, the physical evolution
before the boundaries is unambiguous. This lets us an-
swer several fundamental questions that involve physics
at the Planck scale. Ref. [33] studies black holes and re-
solves the information [29] and firewall [31] paradoxes.
Sec. VII E of the current paper investigates a related
question of where the new microscopic degrees of free-
dom “appear from” when inflation stretches space per-
petually and why all the short-scale modes are initially
in the ground state of the system Hamiltonian.

We note possible fundamental connection of

a. stability of the physical vacuum to ultraviolet quan-
tum loops,

b. initial state of inflationary modes, and

c. final state of evaporating black holes.

If quantum field dynamics with general-relativistic ac-
tion applies approximately up to the Planck energy then
any excitation of field modes close to that energy col-
lapses to a black hole. Hence the new short-scale degrees
of freedom that emerge during inflation from the Planck
scale should be in the ground state of the theory Hamil-
tonian. This also automatically allows the inflation to
continue, without being quenched by radiation pressure
from high-energy excitations. Independently of inflation,
an evaporating black hole should end up at the same
physical vacuum of the Planck-scale modes. Otherwise,
virtual black holes from quantum loops would destabilize
the vacuum. Thus at the Planck scale the wave function
should be the same for the vacuum (the ground state of
the Hamiltonian of the emergent system), the initial state
of the field modes during inflation, and the final state of a
black hole after its complete evaporation. This universal,
for a given theory, function may not be the Gaussian one
but can be any fixed transformation of it (Sec. VII E).

Various alternative formulations of quantum mechan-
ics (for example, nine is identified in Ref. [61]) lead to
macroscopic predictions most of which are indistinguish-
able for the existing experiments. Nevertheless, many
of these formulations are not mutually equivalent . They
suggest different objective, observer-independent organi-
zation of nature. Moreover, they lead to different predic-
tions for some experiments that have not been performed
but may be contemplated in principle.

The described emergent quantum evolution is neces-
sarily Everettian. It branches into multiple coexistent
non-communicating macroscopic worlds. However, for a
finite underlying structure, the number of the objectively
existing Everett branches, while possibly huge, is finite.
As a result, the probability of a specific macroscopic out-
come is well defined. Importantly, the branches whose
norm diminishes below a fixed positive limit cease to ex-
ist as objective entities. Therefore, some outcomes that
would be possible in the axiomatic quantum mechanics
due to an unlikely but allowed quantum fluctuation do
not materialize as physical reality.

The considered quantum states of evolving fields with
gauge and gravitational interaction essentially are certain
patterns in the arbitrary static arrangement of informa-
tion. We may consider, for example, the information
contained in a pile of sand grains or in bits recorded to
a CD. Our results demonstrate that knowing the math-
ematical form of the physical laws [20] is insufficient for
predicting some physical outcomes. The latter also de-
pend on the material representation of this mathematics.
Our physical world can be represented simultaneously by
all the possible basic carriers of information.

The fundamental carriers of information are unlikely to
be themselves the objects of our physical world, which in
the suggested view emerges from the most general static
structure. It is, therefore, difficult to speculate on the
nature of these fundamental objects. On the other hand,
we probably have all the tools for theoretical study of the
physical systems that emerge in these structures gener-
ically. Along with experimentally accessible knowledge
about our physical world, this may turn out to be suffi-
cient for predicting the probabilities of the outcomes for
every feasible physical process.
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APPENDIX A: NON-ABELIAN GAUGE
SYMMETRY IN CURVED SPACETIME

In this Appendix we consider the general locally
Lorentz-invariant renormalizable gauge theory with
scalar-field matter. We show explicitly that its wave func-
tion is unchanged by the gauge transformations of the
fields. We allow for an arbitrary abelian or non-abelian
gauge group and arbitrary 3 + 1 dimensional spacetime
metric gµν(x), treated in this Appendix as a classical ex-
ternal field.

The corresponding renormalizable, gauge-invariant
and locally Lorentz-invariant Lagrangian density L in-
volves spacetime derivatives of the gauge fields Aaµ only
through the covariant field-strength tensor

F aµν = ∂µA
a
ν − ∂νAaµ + fabcAbµA

c
ν , (A1)

where fabc are the completely anti-symmetric structure
constants of the gauge group. Hence the Lagrangian does



34

not contain ∂tA
a
0 . Then the Euler-Lagrange equations for

the fields Aa0 become the primary constraint equations

π̂0
a ψ =

∂L
∂(∂tAa0)

ψ = 0 , (A2)

by which

δ

δAa0
ψ = iπ̂0

a ψ = 0 . (A3)

Thus the wave function does not depend on Aa0 , in agree-
ment with the construction of Sec. V.

The constancy of the wave function ψ(φ,Aai ) on the
gauge orbits follows from the secondary constraints,
which can be obtained as follows. Gauge-invariant La-
grangian density L involves spacetime derivatives of the
matter fields φ only through the covariant derivative

Dµφ = (∂µ − iAaµta)φ . (A4)

Here ta are square matrices that multiply the matter
fields column φ and generate its gauge transformation:

δφ = iϕataφ (A5)

for infinitesimal transformation parameters ϕa(x). The
generators ta form a representation of the Lie algebra of
the gauge group:

[ta, tb] = ifabctc . (A6)

Denoting the fields φ, Aaµ, and gµν by f , we thus have14

L = L(Dµφ, F
a
µν , f) . (A7)

The Lagrangian density L corresponds to the Hamil-
tonian density

H = φ̇ · π + Ȧai π
i
a − L . (A8)

From eq. (A4),

φ̇ · π = D0φ · π + iAa0(taφ) · π , (A9)

and from eq. (A1),

Ȧai π
i
a = F a0iπ

i
a + (∂iA

a
0 − fabcAb0Aci )πia . (A10)

For the Lagrangian density (A7), the canonical momenta
fields π and πia are:

π =
∂L
∂φ̇

=
∂L(Dµφ, F

a
µν , f)

∂(D0φ)
, (A11)

πia =
∂L
∂Ȧai

= 2
∂L(Dµφ, F

a
µν , f)

∂F a0i
. (A12)

14 In eq. (A7) and other equations below by displaying the depen-
dence on Dµφ we also imply the dependence on (Dµφ)†.

Eqs. (A11–A12) determine D0φ and F0i as functions of
(π, πia, Diφ, F

a
ij , f). Then substitution of eqs. (A9–A10)

to eq. (A8) yields

H = HN (π, πia, Diφ, F
a
ij , f) +

+Aa0 [i(taφ) · π − ∂iπia − fabcAbiπic] , (A13)

where we dropped a total derivative ∂i(A
a
0π

i
a) and used

the complete antisymmetry of fabc.
The evolution ∂tψ = −iĤψ for the Hamiltonian den-

sity (A13) should not introduce the dependence of ψ
on Aa0 , forbidden by the primary constraint (A3). This
is the case only if the expression that multiplies Aa0 in
eq. (A13) annihilates ψ:

[i(taφ) · π − ∂iπia − fabcAbiπic]ψ = 0 . (A14)

It is the secondary constraint.
Given the gauge variation of φ from eq. (A5) and re-

spectively

δAai = ∂iϕ
a + fabcAbiϕ

c , (A15)

we have

δgaugeψ =

∫
d3x

(
δφ · δψ

δφ(x)
+ δAai

δψ

δAai (x)

)
=

= i

∫
d3xϕa[i(taφ) · π − ∂iπia − fabcAbiπic]ψ .

The expression of the last line vanishes due to the sec-
ondary constraint (A14). Thus for the general gauge-
invariant and Lorentz-invariant local action, the wave
function is constant along the gauge-group orbits:

δgaugeψ = 0 . (A16)

APPENDIX B: GENERALLY COVARIANT
HAMILTONIAN OF MATTER

This Appendix presents the Hamiltonian density that
by the Legendre transformation (A8) corresponds to the
general gauge- and diffeomorphism-invariant bosonic ac-
tion (161) with renormalizable non-gravitational part.
The Appendix also explicitly verifies that the respec-
tive operator

∫
d3xN iHi generates Lie translations of

the physical fields in space.
For the gauge part of the action SA =

∫
d4xLA with

LA =

∫
d4x

√
−g

4e2
F aµνF

aµν (B1)

we find after calculation that

HA = Ȧai π
ai − LA =

= NαHAα + (∂iA
a
0 + fabcAbiA

c
0)πai (B2)
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where explicitly

HAN =
e2

2
√
γ
πaiγijπ

aj +

√
γ

4e2
γikγjlF aijF

a
kl , (B3)

HAi = F aijπ
aj . (B4)

For scalar fields the renormalizable Lagrangian density
with the required symmetries is

Lφ = −
√
−g [gµν(Dµφ)·Dνφ+ V (φ)] , (B5)

where φ is a column of real scalar fields φα (here we
present any complex field as a pair of real ones), Dµ is
the gauge-covariant derivative (A4), and a potential V (φ)
is invariant under the gauge transformations of φ. The
corresponding Hamiltonian density equals

Hφ = φ̇ · π − Lφ =

= NαHφα +Aa0j
a0 (B6)

with

HφN =
π · π
2
√
γ

+
√
γ

[
1

2
γij(Diφ)·Djφ+ V (φ)

]
, (B7)

Hφi = (Diφ) · π (B8)

and, by eqs. (122, A5),

ja0 = i(taφ) · π . (B9)

Due to the secondary gauge constraint (A14) and the
asymmetry of fabc, the sum of the terms that involve A0

in eqs. (B2, B6) annihilates ψ. The remaining terms and
the gravitational part (163) give for the total Hamilto-
nian of the action (161)

Hψ =

∫
d3xNαHαψ (B10)

where

Hα = Hgα +HAα +Hφα , (B11)

with Hgα ≡ (HNg , γijHjg).
Let us verify from the explicit results above that∫
d3xN iHi generates the Lie translations of all the el-

ementary physical fields in space [eq. (151) for µ 6= 0].
Indeed, by eq. (166) and eqs. (159, 164),∫

d3xN iHgi =

∫
d3xN(i|j) π

ij =

= −i
∫
d3xLNγij

δ

δγij
. (B12)

By eqs. (B4) and (131),∫
d3xN iHAi =

∫
d3xN iF aij π

aj =

= −i
∫
d3x [−iLNA

a
j

δ

δAaj
+N iAai j

a0 + C] . (B13)

where Cψ = 0, and where for the second equality we
integrated the term

∫
d3xN i(−∂jAai )πaj by parts and

applied the secondary gauge constraint (A14). Finally,
for the scalar fields we find from eqs. (B8) and (19) that∫

d3xN iHφi =

∫
d3xN i(φ,i · π −Aai ja0) =

=

∫
d3x [−i(LNφ) · δ

δφ
−N iAai j

a0] . (B14)

Adding up these equations, we obtain∫
d3xN iHi = −i

∫
d3x

∑
f=γij ,Aai ,φ

α

LNf
δ

δf(x)
. (B15)

This confirms that the operator
∫
d3xN iHi generates Lie

translations of the fields in space:

e−i
∫
d3xNiHiψ(f) = ψ(f − LNf) . (B16)

APPENDIX C: QUASICLASSICAL LIMIT OF
QUANTUM GRAVITY IN HAMILTONIAN

DESCRIPTION

Lapchinsky and Rubakov [41] considered solutions
of the Wheeler-DeWitt equation with matter (174) in
which the gravitational degrees of freedom are con-
fined to the classical configurations of constructive in-
terference [42] while the matter fields are treated fully
quantum-mechanically. They showed that in the leading
order of quasiclassical expansion the prefactor ψ̃(f̃ , f̄cl(t))
of the quasiclassical ansatz (176) for such solutions sat-
isfies

i∂tψ̃ = H̃ψ̃ . (C1)

This formula has the appearance of the Schrodinger equa-
tion. Yet several obstacles, discussed further, should be
overcome in order to reduce it to the actual Schrdinger
equation of quantum field theory.

Kim [43] later demonstrated that the conditions for
quasiclassicality necessarily fail when in an expanding
universe only gravity is treated quasiclassically. In this
Appendix we extend the arguments of Lapchinsky and
Rubakov to our case, where the quasiclassical variables f̄
are the long-wavelength components of the metric and
matter fields together.

We start from the exact Hamiltonian constraint for the
full wave function (176):

(H̄ + H̃)
[
A(f̄) eiS(f̄) ψ̃(f̄ , f̃)

]
= 0 . (C2)

From application of π̄ = −iδ/δf̄ , entering H̄(f̄ , π̄), we

retain only15 the first derivatives of S and ψ̃ over f̄ . We

15 The derivatives of A(f̄) are balanced at the higher orders of
the quasiclassical expansion for the background ψ̄(f̄) ≡ AeiS ,
eq. (178). Hence they do not affect the short-scale wave func-
tion ψ̃ in the considered leading order.
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then have

H̄(f̄ ,
δS

δf̄
) ψ̃ − i

∫
d3x

δH̄

δπ̄α(x)

δψ̃

δf̄α(x)
+ H̃ψ̃ = 0 . (C3)

The first term in eq. (C3) vanishes by eq. (180), which
defined S(f̄). If we confine f̄ to the configurations f̄cl

then by eq. (186) we can replace δH̄/δπ̄α(x) in the second

term by ˙̄fαcl(x). Then eq. (C3) becomes

−i
∫
d3x ˙̄fαcl(x)

δψ̃(f̃ , f̄cl)

δf̄αcl(x)
+ H̃ψ̃ = 0 . (C4)

This gives

i∂tψ̃(f̃ , t) = H̃ψ̃(f̃ , t) (C5)

where

ψ̃(f̃ , t) ≡ ψ̃(f̃ , f̄cl(t)) . (C6)

Eq. (C5) reminds us the Schrodinger equation for

a time-dependent wave function ψ̃(f̃ , t) of the “micro-

scopic” degrees of freedom f̃ . However, its “Hamilto-
nian” H̃ involves not only the momenta of matter fields
φ̃ and Ãi but also of the metric field γ̃ij . Moreover, the
metric scale factor a = ā+ ã enters the kinetic energy
term δ2/δã2 of this Hamiltonian with the “wrong” sign,
evident from eq. (174). This does not yet imply vac-
uum instability because ã(x), along with three other in-
dependent parameters of γ̃ij , can be gauged away by a
change of four spacetime coordinates xµ. Nonetheless,
this obstacle needs to be resolved with some consistent
procedure.

There is another difficulty in using eq. (C5) for actual
calculations. We defined f̄cl(t) as the trajectory of con-
structive interference for the background Hamiltonian H̄.
However, the added Hamiltonian H̃ for the short-
wavelengths modes, typically of the form H̃(f̃ , π̃, f̄),
displaces the constructive interference trajectory away
from f̄cl(t). Indeed, in the Hamilton equation for ˙̄π the
classical force −δH̄/δf̄ should then be corrected by the

additional contribution −δH̃/δf̄ .
It is possible to provide a formal stable solution to

the equation (H̄ + H̃)ψ(f̄ , f̃) = 0 by expanding ψ(f̄ , f̃)

over the eigenstates of H̃ [62] or over another convenient
complete set of states [43] as

ψ(f̄ , f̃) =
∑
n

cn(f̄)ψn(f̄ , f̃) . (C7)

The resulting formalisms [43, 62], however, become more
involved than just a single Schrodinger equation of the
form (C1). To the contrast, the Lagrangian approach,
pursued in Sec. VII C of the main text, yields compact
evolution equations with simple physical interpretation.
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