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We develop a parameterized post-Friedmann (PPF) framework which describes three regimes of
modified gravity models that accelerate the expansion without dark energy. On large scales, the
evolution of scalar metric and density perturbations must be compatible with the expansion history
defined by distance measures. On intermediate scales in the linear regime, they form a scalar-tensor
theory with a modified Poisson equation. On small scales in dark matter halos such as our own
galaxy, modifications must be suppressed in order to satisfy stringent local tests of general relativity.
We describe these regimes with three free functions and two parameters: the relationship between
the two metric fluctuations, the large and intermediate scale relationships to density fluctuations
and the two scales of the transitions between the regimes. We also clarify the formal equivalence
of modified gravity and generalized dark energy. The PPF description of linear fluctuation in f(R)
modified action and the Dvali-Gabadadze-Porrati braneworld models show excellent agreement with
explicit calculations. Lacking cosmological simulations of these models, our non-linear halo-model
description remains an ansatz but one that enables well-motivated consistency tests of general
relativity. The required suppression of modifications within dark matter halos suggests that the
linear and weakly non-linear regimes are better suited for making complementary test of general
relativity than the deeply non-linear regime.

PACS numbers:

I. INTRODUCTION

Theoretically compelling alternatives to a cosmological
constant as the source of the observed cosmic acceleration
are currently lacking. In the absence of such alternatives,
it is useful to have a phenomenological parameterized ap-
proach for testing the predictions of a cosmological con-
stant and phrasing constraints in a model-independent
language. This approach parallels that of local tests of
general relativity. The parameterized post-Newtonian
description of gravity forms a complete description of
leading order deviations from general relativity locally
under a well-defined set of assumptions [1].

A parameterization of cosmic acceleration from the
standpoint of dark energy is now well-established. The
expansion history that controls distance observables is
completely determined by the current dark energy den-
sity and its equation of state as a function of redshift.
Structure formation tests involve additional parameters
that control inhomogeneities in the dark energy. Covari-
ant conservation of energy-momentum requires that the
dark energy respond to metric or gravitational poten-
tial fluctuations at least on scales above the horizon. In
a wide class of models where the dark energy remains
smooth relative to the matter on small scales, the phe-
nomenological parameter of interest is where this transi-
tion occurs [2, 3, 4].

A similar structure is imposed on modified gravity
models that accelerate the expansion without dark en-
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ergy. Requirements that gravity remain a metric theory
where energy-momentum is covariantly conserved also
place strong constraints their scalar degrees of freedom.
On scales above the horizon, structure evolution must be
compatible with the background expansion [5]. Interme-
diate scales are characterized by a scalar-tensor theory
with a modified Poisson equation [6]. If these modifi-
cations are to pass stringent local tests of gravity then
additional scalar degrees of freedom must be suppressed
locally [7]. Two explicit models that exhibit all three
regimes of modified gravity are the so-called f(R) mod-
ified Einstein-Hilbert action models [8, 9, 10] and the
Dvali-Gabadadze-Porrati (DGP) braneworld model [11].

Although several parameterized gravity approaches ex-
ist in the literature, none describe all three regimes of
modified gravity (cf. [12, 13]) and most do not explicitly
enforce a metric structure to gravity or energy momen-
tum conservation (e.g. [14, 15, 16, 17, 18]).

In this paper, we develop a parameterized post-
Friedmann (PPF) framework that describes all three
regimes of modified gravity models that accelerate the
expansion without dark energy. We begin in §II by de-
scribing the three regimes individually and the require-
ments they impose on the structure of such modifications.
In §III, we describe a linear theory parameterization of
the first two regimes and test it against explicit calcula-
tions of the f(R) and DGP models. In §IV, we develop a
non-linear ansatz for the third regime based on the halo
model of non-linear clustering. In the Appendix, we clar-
ify the formal relationship between modified gravity and
dark energy beyond the smooth class of models.
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flecting the opposite sign of g in the linear regime of the
two models.

V. DISCUSSION

We have introduced a parameterized framework for
considering scalar modifications to gravity that acceler-
ate the expansion without dark energy. This framework
features compatibility in the evolution of structure with a
background expansion history on large scales, a modifica-
tion of the Poisson equation on intermediate scales, and
a return to general relativity within collapsed dark mat-
ter halos. This return to general relativity is required of
models to pass stringent local tests of gravity. We have
also clarified the formal relationship between modified
gravity and dark energy in the Appendix. A metric based
modified gravity model can always be cast in terms of a
dark energy component with a stress energy tensor de-
fined to match its influence on the metric. However such
a component would possess dynamics which are coupled
to the matter.

Our parameterized post-Friedmann framework fea-
tures several free functions even in the linear regime.
The most important function is the relationship g =
(Φ +Ψ)/(Φ−Ψ) between the time-time and space-space
pieces of the metric in Newtonian gauge. Supplementing
these are two functions that link the metric to matter
density perturbations: one on super-horizon scales and
one on intermediate scales. Finally there is a param-
eter that controls the interpolation between these two
regimes.

We have shown that with an appropriate choice of pa-
rameters this framework describes linear perturbations
in the f(R) modified action and DGP braneworld grav-
ity models. It may be used in place of the more com-
plicated 4th order and higher dimensional dynamics ex-
hibited in these models respectively when studying phe-
nomena such as the integrated Sachs-Wolfe effect in the
CMB, large-scale gravitational lensing and galaxy clus-
tering. We intend to explore these applications in a fu-
ture work.

On non-linear scales our framework features an ansatz
based on the requirement that scalar modifications
should be suppressed locally in order to pass the stringent
tests of general relativity in the solar system. Indeed the
scalar degrees of freedom in both the f(R) and the DGP
models possess non-linearities that drive the dynamics
back to general relativity in high curvature or high den-
sity regimes. Our ansatz is based on the halo model of
non-linear clustering. It allows for a density dependent
interpolation for the abundance and structure of dark
matter halos between the expectations of general relativ-
ity and the modified Poisson equation on intermediate
scales.

Due to the current lack of cosmological simulations in
these modified gravity models, the accuracy of our simple
ansatz remains untested. With cosmological simulations,

our framework can be extended and refined by introduc-
ing more parameters that describe the potentially mass-
dependent modification of dark matter haloes. In fact,
our simple halo model parameterization is not even suffi-
cient to accurately model non-linear effects in general rel-
ativity. Nonetheless phrased as a simple template form
for relative deviations in the power spectrum between
modified gravity and general relativity with smooth dark
energy, our current ansatz can be used in conjunction
with more accurate results from dark energy cosmologi-
cal simulations. For example, it can be used to search for
possible deviations of this type as a consistency check on
dark energy inferences from expansion history tests with
upcoming cosmic shear surveys.

While many such consistency tests have been proposed
in the literature, it is important to incorporate a density
dependence to the modifications as we have done here.
The principle that non-linear scales should exhibit a re-
turn to general relativity itself suggests that mildly non-
linear scales provide the most fruitful window for cos-
mological tests of gravity. Furthermore uncertainties in
the baryonic influence on the internal structure of dark
matter halos in the deeply non-linear regime even under
general relativity (e.g. [37, 38]) make consistency tests in
this regime potentially ambiguous. Our parameterized
framework should enable studies of such issues in the fu-
ture.

APPENDIX A: DARK ENERGY

CORRESPONDENCE

Suppose we view the modifications to gravity in terms
of an additional “dark energy” stress tensor. We are free
to define the dark energy stress tensor to be

T µν
e ≡

1

8πG
Gµν − T µν

m . (A1)

Given this association, all of the familiar structure of
cosmological perturbation theory in general relativity ap-
plies. In particular, covariant conservation of the matter
stress energy tensor T µν

m and the Bianchi identities imply
conservation of the effective dark energy

∇µT µν
e = 0 . (A2)

The remaining degrees of freedom in the effective dark
energy stress tensor can then be parameterized in the
same manner as a general dark energy component [3].
Two models that imply the same T µν

e at all points in
spacetime are formally indistinguishable gravitationally
[21, 39].

Note however that this equivalence is only formal and
two physically distinct models, e.g. f(R) modified grav-
ity and scalar field dark energy, will not in general imply
the same effective stress energy tensor. The Einstein and
conservation equations do not form a closed system and
the distinction between modified gravity and dark en-
ergy lies in the closure relation. For dark energy that
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is not coupled to matter, the closure relationship takes
the form of equations of state that define its internal dy-
namics. These micro-physical relations do not depend
explicitly on the matter. For example for scalar field
dark energy, the sound speed or the relationship between
the pressure and energy density fluctuations is defined in
the constant field gauge without reference to the matter
[3], and is associated with the form of the kinetic term in
the Lagrangian [40].

For modified gravity of the type described in this pa-
per, we shall see that the closure relations must depend
explicitly on the matter. The effective dark energy of a
modified gravity model must be coupled to the matter.
In other words, while the modification gravity can be
modeled as fifth forces mediated by the effective dark en-
ergy, it cannot be viewed as a missing energy component
that obeys separate equations of motion.

It is nonetheless useful to phrase the PPF parameter-
ization in terms of an effective dark energy component.
It enables the use of the extensive tools developed for
cosmological perturbation theory and facilitates the de-
velopment of PPF formalisms in different gauges.

1. Covariant Field and Conservation Equations

Following [20, 41], we parameterize linear scalar metric
fluctuations of a comoving wavenumber k as

g00 = −a−2(1 − 2AY ) ,

g0i = −a−2BY i ,

gij = a−2(γij − 2HLY γij − 2HT Y ij) , (A3)

where the “0” component denotes conformal time η =∫
dt/a and γij is the background spatial metric which we

assume to be flat across scales comparable to the wave-
length. Under this assumption, the spatial harmonics are
simply plane waves

Y = eik·x ,

Yi = (−k)∇iY ,

Yij = (k−2∇i∇j + γij/3)Y . (A4)

Likewise the components of the stress tensors can be pa-
rameterized as

T 0
0 = −ρ − δρ ,

T i
0 = −(ρ + p)vY i ,

T i
j = (p + δpY )δi

j + pΠY i
j , (A5)

where we will use the subscripts m to denote the matter
and e to denote the effective dark energy. When no sub-
script is specified we mean the components of the total or
matter plus effective dark energy stress tensor. For sim-
plicity we assume that the radiation is negligible during
the epochs of interest.

By definition, Eqn. (A1) enforces the usual 4 Einstein
field equations [21]

HL +
1

3
HT +

B

kH
−

H ′

T

k2
H

=
4πG

H2k2
H

[
δρ + 3(ρ + p)

v − B

kH

]
,

A + HL +
HT

3
+

B′ + 2B

kH
−

[
H ′′

T

k2
H

+

(
3 +

H ′

H

)
H ′

T

k2
H

]

= −
8πG

H2k2
H

pΠ ,

A − H ′

L −
H ′

T

3
=

4πG

H2
(ρ + p)

v − B

kH
,

A′ +

(
2 + 2

H ′

H
−

k2
H

3

)
A −

kH

3
(B′ + B)

− H ′′

L −

(
2 +

H ′

H

)
H ′

L =
4πG

H2
(δp +

1

3
δρ) , (A6)

where recall ′ = d/d ln a and kH = (k/aH). The con-
servation laws for the matter and effective dark energy
become

δρ′ + 3(δρ + δp) = −(ρ + p)(kHv + 3H ′

L) , (A7)

[a4(ρ + p)(v − B)]′

a4kH
= δp −

2

3
pΠ + (ρ + p)A .

There are 4 metric variables and 4 matter variables per
component that obey 4 Einstein equations and 2 conser-
vation equations per component. However 2 out of 4 of
the Einstein equations are redundant since the Bianchi
identities are automatically satisfied given a metric. Fur-
thermore, 2 degrees of freedom simply represent gauge or
coordinate freedom. This leaves 2 degrees of freedom per
component to be specified. Usually, this involves defin-
ing equations of state that specify the spatial stresses in
terms of the energy density and velocities. As we shall
see, it is this prescription that must be altered to describe
modified gravity.

2. Gauge

The scalar gauge degrees of freedom are fixed by gauge
conditions. Under a gauge transformation defined by the
change in conformal time slicing T and spatial coordi-
nates L

η = η̃ + T , (A8)

xi = x̃i + LY i ,

the metric variables transform as

A = Ã − aH(T ′ + T ) ,

B = B̃ + aH(L′ + kHT ) ,

HL = H̃L − aH(T +
1

3
kH) ,

HT = H̃T + aHkHL , (A9)
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